Artículo
Monomial convergence on ℓr
Fecha de publicación:
18/05/2021
Editorial:
Mathematical Science Publishers
Revista:
Analysis and PDE
ISSN:
2157-5045
e-ISSN:
1948-206X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-983
Compartir
Altmétricas