Artículo
A minimization problem for the p(x)-Laplacian involving area
Fecha de publicación:
04/03/2021
Editorial:
Springer Heidelberg
Revista:
Annali Di Matematica Pura Ed Applicata
ISSN:
0373-3114
e-ISSN:
1618-1891
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the present article we study a minimization problem in RN involving the perimeter of the positivity set of the solution u and the integral of | ∇ u| p(x). Here p(x) is a Lipschitz continuous function such that 1 < pmin≤ p(x) ≤ pmax< ∞. We prove that such a minimizing function exists and that it is a classical solution to a free boundary problem. In particular, the reduced free boundary is a C2 surface and the dimension of the singular set is at most N- 8. Under further regularity assumptions on the exponent p(x) we get more regularity of the free boundary. In particular, if p∈ C∞ we have that ∂red{ u> 0 } is a C∞ surface.
Palabras clave:
FREE BOUNDARY PROBLEMS
,
MEAN CURVATURE
,
VARIABLE EXPONENT SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Casari Rampasso, Giane; Wolanski, Noemi Irene; A minimization problem for the p(x)-Laplacian involving area; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 200; 5; 4-3-2021; 2155-2179
Compartir
Altmétricas