Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters

Dogliotti, Ana InésIcon ; Ruddick, K. G.; Nechad, B.; Doxaran, D.; Knaeps, E.
Fecha de publicación: 01/2015
Editorial: Elsevier Science Inc
Revista: Remote Sensing Of Environment
ISSN: 0034-4257
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

Ocean color remote sensing has been shown to be a useful tool to map turbidity (T) and suspended particulate matter (SPM) concentration in turbid coastal waters. Different algorithms to retrieve T and/or SPM from water reflectance already exist, however there are important questions as to whether these algorithms need to be calibrated specifically for different regions. In the present work the potential generality of a semi-empirical single band turbidity retrieval algorithm using the near infrared (NIR) band at 859 nm in highly turbid waters is assessed. For completeness the use of 645 nm in medium to low turbidity waters is also proposed. Radiative transfer simulations and in situ measurements from various European and South American coastal and shallow estuarine environments characterized by high concentrations of suspended sediments are analyzed. Reflectance and turbidity measurements were performed in the southern North Sea (SNS) and French Guyana (FG) coastal waters, and Scheldt (SC), Gironde (GIR) and Río de la Plata (RdP) estuaries. Simulations showed that uncertainty for turbidity estimation associated with different particle types and bidirectional effects is typically less than 6%. When applied to field data from the five different sites, the semi-analytical algorithm performed well: turbidity estimates were within 12% and 22% of in situ values. A good performance was also found when the entire database was analyzed (n = 106) with a mean relative error of 13.7% and bias of 4.8%. The good performance of the algorithm for all these regions, despite differences in sediment characteristics, and the results of the radiative transfer simulations suggest the global applicability of the algorithm to map turbidity up to 1000 FNU. Consequently regional algorithms to retrieve SPM concentration from reflectance can be designed by combining this global algorithm to retrieve T from water reflectance with a regional relationship to convert T to SPM. This has the very practical advantage that the measurements needed to calibrate the latter T/SPM conversion for any new region are much easier and cheaper than in situ reflectance measurements.
Palabras clave: Turbidity (T) , Water Reflectance , Radiative Transfer Simulations , Uncertainty Analysis , T Algorithm Validation , Southern North Sea , Scheldt , Gironde , Río de La Plata , French Guyana
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.648Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/16701
URL: http://www.sciencedirect.com/science/article/pii/S0034425714003654
DOI: https://doi.org/10.1016/j.rse.2014.09.020
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Dogliotti, Ana Inés; Ruddick, K. G.; Nechad, B.; Doxaran, D.; Knaeps, E.; A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters; Elsevier Science Inc; Remote Sensing Of Environment; 156; 1-2015; 157-168
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES