Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign

Dillon, María EugeniaIcon ; Maldonado, Paula SoledadIcon ; Corrales, Paola BelenIcon ; Garcia Skabar, YaninaIcon ; Ruiz, Juan JoseIcon ; Sacco, Maximiliano Antonio; Cutraro, Federico Javier; Mingari, Leonardo AlejandroIcon ; Matsudo, Cynthia Mariana; Vidal, LucianoIcon ; Rugna, Martin Ezequiel; Hobouchian, María Paula; Salio, Paola VeronicaIcon ; Nesbitt, Stephen; Saulo, Andrea CelesteIcon ; Kalnay, Eugenia; Miyoshi, Takemasa
Fecha de publicación: 12/2021
Editorial: Elsevier
Revista: Atmospheric Research
ISSN: 0169-8095
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

This paper describes the lessons learned from the implementation of a regional ensemble data assimilation and forecast system during the intensive observing period of the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign (central Argentina, November–December 2018). This system is based on the coupling of the Weather Research and Forecasting (WRF) model and the Local Ensemble Transform Kalman Filter (LETKF). It combines multiple data sources both global and locally available like high-resolution surface networks, AMDAR data from local aircraft flights, soundings, AIRS retrievals, high-resolution GOES-16 wind estimates, and local radar data. Hourly analyses with grid spacing of 10 km are generated along with warm-start 36-h ensemble-forecasts, which are initialized from the rapid refresh analyses every three hours. A preliminary evaluation shows that a forecast error reduction is achieved due to the assimilated observations. However, cold-start forecasts initialized from the Global Forecasting System Analysis slightly outperform the ones initialized from the regional assimilation system discussed in this paper. The system uses a multi-physics approach, focused on the use of different cumulus and planetary boundary layer schemes allowing us to conduct an evaluation of different model configurations over central Argentina. We found that the best combinations for forecasting surface variables differ from the best ones for forecasting precipitation, and that differences among the schemes tend to dominate the forecast ensemble spread for variables like precipitation. Lessons learned from this experimental system are part of the legacy of the RELAMPAGO field campaign for the development of advanced operational data assimilation systems in South America.
Palabras clave: REGIONAL DATA ASSIMILATION , REGIONAL ENSEMBLE FORECASTS , RELAMPAGO
Ver el registro completo
 
Archivos asociados
Tamaño: 5.149Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166990
URL: https://www.sciencedirect.com/science/article/pii/S0169809521004142
DOI: http://dx.doi.org/10.1016/j.atmosres.2021.105858
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Dillon, María Eugenia; Maldonado, Paula Soledad; Corrales, Paola Belen; Garcia Skabar, Yanina; Ruiz, Juan Jose; et al.; A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign; Elsevier; Atmospheric Research; 264; 12-2021; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES