Artículo
Large-time behavior for a fully nonlocal heat equation
Fecha de publicación:
09/2021
Editorial:
Springer
Revista:
Vietnam Journal of Mathematics
ISSN:
2305-221X
e-ISSN:
2305-2228
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the large-time behavior in all Lp norms and in different space-time scales of solutions to a nonlocal heat equation in ℝN involving a Caputo α-time derivative and a power of the Laplacian (−Δ)s, s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in Lp. The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Large-time behavior for a fully nonlocal heat equation; Springer; Vietnam Journal of Mathematics; 49; 3; 9-2021; 831-844
Compartir
Altmétricas