Mostrar el registro sencillo del ítem

dc.contributor.author
Lopes, Samuel  
dc.contributor.author
Solotar, Andrea Leonor  
dc.date.available
2022-08-29T15:45:22Z  
dc.date.issued
2021-12-07  
dc.identifier.citation
Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407  
dc.identifier.issn
1661-6952  
dc.identifier.uri
http://hdl.handle.net/11336/166833  
dc.description.abstract
For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
GERSTENHABER BRACKET  
dc.subject
HOCHSCHILD COHOMOLOGY  
dc.subject
ORE EXTENSION  
dc.subject
WEYL ALGEBRA  
dc.subject
WITT ALGEBRA  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-23T20:46:04Z  
dc.identifier.eissn
1661-6960  
dc.journal.volume
15  
dc.journal.number
4  
dc.journal.pagination
1373-1407  
dc.journal.pais
Suiza  
dc.journal.ciudad
Zürich  
dc.description.fil
Fil: Lopes, Samuel. Universidad de Porto; Portugal  
dc.description.fil
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal of Noncommutative Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.4171/jncg/439  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350