Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation

Rodríguez Hernández, Carlos Felipe; Musso, Mariel FernandaIcon ; Kyndt, Eva; Cascallar, Eduardo
Fecha de publicación: 03/2021
Editorial: Elsevier
Revista: Computers and Education: Artificial Intelligence
e-ISSN: 2666-920X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

The applications of artificial intelligence in education have increased in recent years. However, further conceptual and methodological understanding is needed to advance the systematic implementation of these approaches. The first objective of this study is to test a systematic procedure for implementing artificial neural networks to predict academic performance in higher education. The second objective is to analyze the importance of several well-known predictors of academic performance in higher education. The sample included 162,030 students of both genders from private and public universities in Colombia. The findings suggest that it is possible to systematically implement artificial neural networks to classify students’ academic performance as either high (accuracy of 82%) or low (accuracy of 71%). Artificial neural networks outperform other machine-learning algorithms in evaluation metrics such as the recall and the F1 score. Furthermore, it is found that prior academic achievement, socioeconomic conditions, and high school characteristics are important predictors of students’ academic performance in higher education. Finally, this study discusses recommendations for implementing artificial neural networks and several considerations for the analysis of academic performance in higher education.
Palabras clave: ACADEMIC PERFORMANCE , ARTIFICIAL NEURAL NETWORKS , HIGHER EDUCATION , PREDICTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.194Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166796
DOI: http://dx.doi.org/10.1016/j.caeai.2021.100018
URL: https://www.sciencedirect.com/science/article/pii/S2666920X21000126
Colecciones
Articulos(CIIPME)
Articulos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Citación
Rodríguez Hernández, Carlos Felipe; Musso, Mariel Fernanda; Kyndt, Eva; Cascallar, Eduardo; Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation; Elsevier; Computers and Education: Artificial Intelligence; 2; 100018; 3-2021; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES