Mostrar el registro sencillo del ítem

dc.contributor.author
Caffaratti, Gabriel Dario  
dc.contributor.author
Marchetta, Martín G.  
dc.contributor.author
Euillades, Leonardo Daniel  
dc.contributor.author
Euillades, Pablo Andrés  
dc.contributor.author
Forradellas, Raymundo Quilez  
dc.date.available
2022-08-25T12:04:43Z  
dc.date.issued
2021-11  
dc.identifier.citation
Caffaratti, Gabriel Dario; Marchetta, Martín G.; Euillades, Leonardo Daniel; Euillades, Pablo Andrés; Forradellas, Raymundo Quilez; Improving forest detection with machine learning in remote sensing data; Elsevier Science; Remote Sensing Applications: Society and Environment; 24; 100654; 11-2021; 1-18  
dc.identifier.issn
2352-9385  
dc.identifier.uri
http://hdl.handle.net/11336/166553  
dc.description.abstract
Forest detection in remote sensing data is essential for important applications such as detection of area desertification, flooding simulation, forest health analysis, or conversion of digital elevation models. Existing techniques have open issues: they do not generalize well to different scenarios, they lack accuracy, and they require human intervention for input data characterization. To address these issues, in this work, we developed various classification models by using a variety of Machine Learning techniques, namely Convolutional Neural Networks (CNN), Random Forest ensembles (RF), and Support Vector Machines (SVM). Different CNN architectures were created specifically for the forest detection problem, and alternative feature extraction mechanisms were developed to support RF and SVM for this task. All these models were trained with SRTM and Landsat-8 satellite data, and their hyperparameters were optimized. Their effectiveness was assessed by using the Forest/No-Forest masks provided by JAXA as ground truth. Additionally, these models were compared against the JAXA's mask itself using expert-labeled data as ground truth. The experiments show promising results in terms of accuracy and generalization while presenting a reduced dependency on human intervention for characterizing data in both training and classification phases.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
FOREST DETECTION  
dc.subject
MACHINE LEARNING  
dc.subject
REMOTE SENSING  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Improving forest detection with machine learning in remote sensing data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-16T20:38:37Z  
dc.journal.volume
24  
dc.journal.number
100654  
dc.journal.pagination
1-18  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería. Instituto de Ingeniería Industrial. Cent.de Estudios y Aplicaciones Logisticas; Argentina  
dc.description.fil
Fil: Marchetta, Martín G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Euillades, Leonardo Daniel. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Euillades, Pablo Andrés. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo; Argentina  
dc.journal.title
Remote Sensing Applications: Society and Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352938521001907  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.rsase.2021.100654