Artículo
Eliminating components in Quillen's conjecture
Fecha de publicación:
16/06/2022
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We generalize an earlier result of Segev, which shows that some component in a minimal counterexample to Quillen's conjecture must admit an outer automorphism. We show in fact that every component must admit an outer automorphism. Thus we transform his restriction-result on components to an elimination-result: namely one which excludes any component which does not admit an outer automorphism. Indeed we show that the outer automorphisms admitted must include p-outers: that is, outer automorphisms of order divisible by p. This gives stronger, concrete eliminations: for example if p is odd, it eliminates sporadic and alternating components—thus reducing to Lie-type components (and typically forcing p-outers of field type). For p=2, we obtain similar but less restrictive results. We also provide some tools to help eliminate suitable components that do admit p-outers in a minimal counterexample.
Palabras clave:
FINITE GROUPS
,
P-SUBGROUPS
,
POSETS
,
QUILLEN'S CONJECTURE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Piterman, Kevin; Smith, Stephen D.; Eliminating components in Quillen's conjecture; Academic Press Inc Elsevier Science; Journal of Algebra; 607; Parte A; 16-6-2022; 681 - 732
Compartir
Altmétricas