Mostrar el registro sencillo del ítem

dc.contributor.author
Escorcielo, Paula Micaela  
dc.contributor.author
Perrucci, Daniel Roberto  
dc.date.available
2022-08-25T02:15:12Z  
dc.date.issued
2021-07  
dc.identifier.citation
Escorcielo, Paula Micaela; Perrucci, Daniel Roberto; On sum of squares certificates of non-negativity on a strip; Elsevier Science; Journal Of Pure And Applied Algebra; 225; 7; 7-2021; 1 - 21  
dc.identifier.issn
0022-4049  
dc.identifier.uri
http://hdl.handle.net/11336/166508  
dc.description.abstract
In Polynomials non-negative on a strip, Murray Marshall proved that every non-negative on the strip can be written as with sums of squares in . In this work, we present a few results concerning this representation in particular cases. First, under the assumption , by characterizing the extreme rays of a suitable cone, we obtain a degree bound for each term. Then, we consider the case of f positive on and non-vanishing at infinity, and we show again a degree bound for each term, coming from a constructive method to obtain the sum of squares representation. Finally, we show that this constructive method also works in the case of f having only a finite number of zeros, all of them lying on the boundary of the strip, and such that does not vanish at any of them.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CERTIFICATES OF NON-NEGATIVITY  
dc.subject
DEGREE BOUNDS  
dc.subject
SUMS OF SQUARES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On sum of squares certificates of non-negativity on a strip  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:21:06Z  
dc.journal.volume
225  
dc.journal.number
7  
dc.journal.pagination
1 - 21  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Escorcielo, Paula Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal Of Pure And Applied Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jpaa.2020.106607  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002240492030308X