Artículo
SIR dynamics with vaccination in a large configuration model
Fecha de publicación:
24/07/2021
Editorial:
Springer
Revista:
Applied Mathematics And Optimization
ISSN:
0095-4616
e-ISSN:
1432-0606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider an SIR model with vaccination strategy on a sparse configuration model random graph. We show the convergence of the system when the number of nodes grows and characterize the scaling limits. Then, we prove the existence of optimal controls for the limiting equations formulated in the framework of game theory, both in the centralized and decentralized setting. We show how the characteristics of the graph (degree distribution) influence the vaccination efficiency for optimal strategies, and we compute the limiting final size of the epidemic depending on the degree distribution of the graph and the parameters of infection, recovery and vaccination. We also present several simulations for two types of vaccination, showing how the optimal controls allow to decrease the number of infections and underlining the crucial role of the network characteristics in the propagation of the disease and the vaccination program.
Palabras clave:
CONFIGURATION MODEL
,
EPIDEMIC
,
OPTIMAL CONTROL
,
SIR-V
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ferreyra, Emanuel Javier; Jonckheere, Matthieu Thimothy Samson; Pinasco, Juan Pablo; SIR dynamics with vaccination in a large configuration model; Springer; Applied Mathematics And Optimization; 84; 2; 24-7-2021; 1769 - 1818
Compartir
Altmétricas