Mostrar el registro sencillo del ítem

dc.contributor.author
Juarez, Gabriel  
dc.contributor.author
Vicente Alvarez, Miguel Angel  
dc.contributor.author
Santisteban, Javier Roberto  
dc.contributor.author
Almer, Jonathan  
dc.contributor.author
Luzin, Vladimir  
dc.contributor.author
Vizcaino, Pablo  
dc.date.available
2022-08-24T13:04:33Z  
dc.date.issued
2022-01  
dc.identifier.citation
Juarez, Gabriel; Vicente Alvarez, Miguel Angel; Santisteban, Javier Roberto; Almer, Jonathan; Luzin, Vladimir; et al.; Global and local texture development during initial plastic deformation of cold-pilgered Zircaloy-4 tubing; Elsevier; Journal of Nuclear Materials; 558; 1-2022; 1-15  
dc.identifier.issn
0022-3115  
dc.identifier.uri
http://hdl.handle.net/11336/166418  
dc.description.abstract
This work presents a thorough characterization of the texture development during the initial step of a cold pilgering process of a Zircaloy-4 TREX tube, on which the axial cross section is reduced by 80% over a 40cm length with an overall Q-ratio of 2.34, followed by a recrystallization thermal treatment. Texture across a tapered specimen representing this working zone was characterized by neutron diffraction and high energy synchrotron x-ray diffraction at 28 positions (4 locations along its length and 7 locations across its thickness with 0.3 mm spatial resolution), and on the deformed end after the thermal treatment. Results show that the starting material (TREX tube) presents a texture gradient through its wall thickness, with the c poles aligned to the hoop direction at the outer surface (with radial and hoop Kearns factors: fR=0.36, fH= 0.50), and gradually rotating around the axial direction to become a quasi-radial orientation (∼35o out of the radial direction) at the inner surface (fR=0.43, fH=0.35). The overall texture becomes more radial due to the cold pilgering, but the texture gradient remains during the whole deformation process, being always more radial at the inner surface, (fR=0.53, fH=0.37 at 80%) than at the outer surface (fR=0.41, fH=0.50at 80%). The most remarkable changes in texture produced by the rolling process is a 30o rotation of the grains around their c-axis, producing a marked increase of the <112¯0> // axial fiber texture at expenses of the original <101¯0> // axial fiber texture observed in the TREX tube. The observed changes in texture during deformation were correctly explained by visco-plastic self-consistent (VPSC) modelling. This was achieved after the inclusion of the basal slip system, which plays a central role to explain the 30o rotation around the c-axis during deformation. The texture evolution was correctly described after the inclusion of a drag effect to grain rotation due to the interaction with neighbouring grains. The through thickness texture differences are greatly reduced by the recrystallization thermal treatment, with similar Kearns factors at the inner surface (fR=0.50,fH=0.28) and the outer surface (fR=0.48, fH=0.39). The predominance of the <101¯0> // axial fiber texture is recovered after recrystallization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COLD PILGERING  
dc.subject
MICROSTRUCTURE  
dc.subject
NEUTRON DIFFRACTION  
dc.subject
SYNCHROTRON X-RAY DIFFRACTION  
dc.subject
TEXTURE DEVELOPMENT  
dc.subject
ZIRCALOY-4  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Global and local texture development during initial plastic deformation of cold-pilgered Zircaloy-4 tubing  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-23T11:19:54Z  
dc.journal.volume
558  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Juarez, Gabriel. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.description.fil
Fil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Almer, Jonathan. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Luzin, Vladimir. Australian Nuclear Science and Technology; Australia  
dc.description.fil
Fil: Vizcaino, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; Argentina  
dc.journal.title
Journal of Nuclear Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022311521006024  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jnucmat.2021.153382