Mostrar el registro sencillo del ítem
dc.contributor.author
Pavlov, Lucas Alejo
dc.contributor.author
D'angelo, María Verónica
dc.contributor.author
Cachile, Mario Andres
dc.contributor.author
Roig, Véronique
dc.contributor.author
Ern, Patricia
dc.date.available
2022-08-23T14:54:37Z
dc.date.issued
2021-09
dc.identifier.citation
Pavlov, Lucas Alejo; D'angelo, María Verónica; Cachile, Mario Andres; Roig, Véronique; Ern, Patricia; Kinematics of a bubble freely rising in a thin-gap cell with additional in-plane confinement; American Physical Society; Physical Review Fluids; 6; 9; 9-2021; 1-19
dc.identifier.uri
http://hdl.handle.net/11336/166350
dc.description.abstract
We analyze the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell filled with distilled water. The gap thickness of the cell is fixed to h≃2.8 mm (or h≃1 mm in additional experiments) and its in-plane width W is varied from 2.4 to 21 cm. This allows us to investigate the evolution from unconfined thin-gap situations (i.e., large W and h≪W) controlled by the bubble characteristic lengths (diameter in the cell plane d>h and thickness close to the gap size h) to doubly confined situations controlled by the channel dimensions. As the bubble size d increases, and beyond a critical value that depends on W, we observe a mean rise velocity of the bubble, Vb, lower than that for larger W, along with a modification of the bubble shape. The departure occurs for oscillating bubbles of approximate elliptical shape, which becomes closer to circular as the lateral confinement increases. We further investigate how the bubble oscillatory motion is impacted by the transverse confinement. Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the relative velocity Urel=Vb/ζ, where ζ=1-d/W is the confinement ratio and found Urel≃Vb,∞ for all the cell widths considered, where Vb,∞ is the mean rise velocity in the absence of the transverse confinement (i.e., for W sufficiently large). This provides an estimation, at leading order, of the bubble velocity, Vb≃0.8ζ(h/d)1/6gd, that generalizes the expression proposed by Filella J. Fluid Mech. 778, 60 (2015)JFLSA70022-112010.1017/jfm.2015.355 and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ζ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales, d and Urel. As the bubble size is increased further, the bubble behavior becomes fully dominated by the channel dimensions. Cylindrical-capped shapes emerge, corresponding to a radius of curvature Rc at the front of the bubble, Rc≃0.31W, independent of the bubble size and of the gap thickness. At the same time, the mean rise velocity of the bubble saturates at a constant value, corresponding to a constant Froude number, Fr=Vb/gW, that depends on the gap thickness h of the cell.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bubble
dc.subject
Lateral confinement
dc.subject
Thin-gap
dc.subject.classification
Física de los Fluidos y Plasma
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Kinematics of a bubble freely rising in a thin-gap cell with additional in-plane confinement
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-19T15:08:50Z
dc.identifier.eissn
2469-990X
dc.journal.volume
6
dc.journal.number
9
dc.journal.pagination
1-19
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Maryland
dc.description.fil
Fil: Pavlov, Lucas Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina
dc.description.fil
Fil: D'angelo, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina
dc.description.fil
Fil: Cachile, Mario Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina
dc.description.fil
Fil: Roig, Véronique. Centre National de la Recherche Scientifique; Francia. Université de Toulouse; Francia
dc.description.fil
Fil: Ern, Patricia. Centre National de la Recherche Scientifique; Francia. Université de Toulouse; Francia
dc.journal.title
Physical Review Fluids
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevFluids.6.093605
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.6.093605
Archivos asociados