Mostrar el registro sencillo del ítem

dc.contributor.author
Pavlov, Lucas Alejo  
dc.contributor.author
D'angelo, María Verónica  
dc.contributor.author
Cachile, Mario Andres  
dc.contributor.author
Roig, Véronique  
dc.contributor.author
Ern, Patricia  
dc.date.available
2022-08-23T14:54:37Z  
dc.date.issued
2021-09  
dc.identifier.citation
Pavlov, Lucas Alejo; D'angelo, María Verónica; Cachile, Mario Andres; Roig, Véronique; Ern, Patricia; Kinematics of a bubble freely rising in a thin-gap cell with additional in-plane confinement; American Physical Society; Physical Review Fluids; 6; 9; 9-2021; 1-19  
dc.identifier.uri
http://hdl.handle.net/11336/166350  
dc.description.abstract
We analyze the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell filled with distilled water. The gap thickness of the cell is fixed to h≃2.8 mm (or h≃1 mm in additional experiments) and its in-plane width W is varied from 2.4 to 21 cm. This allows us to investigate the evolution from unconfined thin-gap situations (i.e., large W and h≪W) controlled by the bubble characteristic lengths (diameter in the cell plane d>h and thickness close to the gap size h) to doubly confined situations controlled by the channel dimensions. As the bubble size d increases, and beyond a critical value that depends on W, we observe a mean rise velocity of the bubble, Vb, lower than that for larger W, along with a modification of the bubble shape. The departure occurs for oscillating bubbles of approximate elliptical shape, which becomes closer to circular as the lateral confinement increases. We further investigate how the bubble oscillatory motion is impacted by the transverse confinement. Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the relative velocity Urel=Vb/ζ, where ζ=1-d/W is the confinement ratio and found Urel≃Vb,∞ for all the cell widths considered, where Vb,∞ is the mean rise velocity in the absence of the transverse confinement (i.e., for W sufficiently large). This provides an estimation, at leading order, of the bubble velocity, Vb≃0.8ζ(h/d)1/6gd, that generalizes the expression proposed by Filella J. Fluid Mech. 778, 60 (2015)JFLSA70022-112010.1017/jfm.2015.355 and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ζ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales, d and Urel. As the bubble size is increased further, the bubble behavior becomes fully dominated by the channel dimensions. Cylindrical-capped shapes emerge, corresponding to a radius of curvature Rc at the front of the bubble, Rc≃0.31W, independent of the bubble size and of the gap thickness. At the same time, the mean rise velocity of the bubble saturates at a constant value, corresponding to a constant Froude number, Fr=Vb/gW, that depends on the gap thickness h of the cell.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bubble  
dc.subject
Lateral confinement  
dc.subject
Thin-gap  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Kinematics of a bubble freely rising in a thin-gap cell with additional in-plane confinement  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-19T15:08:50Z  
dc.identifier.eissn
2469-990X  
dc.journal.volume
6  
dc.journal.number
9  
dc.journal.pagination
1-19  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Pavlov, Lucas Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina  
dc.description.fil
Fil: D'angelo, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina  
dc.description.fil
Fil: Cachile, Mario Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina  
dc.description.fil
Fil: Roig, Véronique. Centre National de la Recherche Scientifique; Francia. Université de Toulouse; Francia  
dc.description.fil
Fil: Ern, Patricia. Centre National de la Recherche Scientifique; Francia. Université de Toulouse; Francia  
dc.journal.title
Physical Review Fluids  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevFluids.6.093605  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.6.093605