Mostrar el registro sencillo del ítem

dc.contributor.author
Moguilner, Sebastian Gabriel  
dc.contributor.author
García, Adolfo Martín  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Tagliazucchi, Enzo Rodolfo  
dc.contributor.author
Piguet, Olivier  
dc.contributor.author
Kumfor, Fiona  
dc.contributor.author
Reyes, Pablo  
dc.contributor.author
Matallana, Diana  
dc.contributor.author
Sedeño, Lucas  
dc.contributor.author
Ibañez, Agustin Mariano  
dc.date.available
2022-08-22T19:38:49Z  
dc.date.issued
2021-01  
dc.identifier.citation
Moguilner, Sebastian Gabriel; García, Adolfo Martín; Sanz Perl Hernandez, Yonatan; Tagliazucchi, Enzo Rodolfo; Piguet, Olivier; et al.; Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: a multicenter study; Elsevier; Journal Neuroimag; 225; 1-2021; 1-12  
dc.identifier.issn
1053-8119  
dc.identifier.uri
http://hdl.handle.net/11336/166278  
dc.description.abstract
From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
AD  
dc.subject
BVFTD  
dc.subject
COPULA-BASED DEPENDENCE MEASURE  
dc.subject
DYNAMIC FUNCTIONAL CONNECTIVITY  
dc.subject
FMRI RESTING-STATE CONNECTIVITY  
dc.subject.classification
Psicología  
dc.subject.classification
Psicología  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: a multicenter study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-19T16:21:17Z  
dc.journal.volume
225  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Fundación Escuela de Medicina Nuclear; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Catolica de Cuyo. Facultad de Educacion.; Argentina  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Piguet, Olivier. The University Of Sydney; Australia  
dc.description.fil
Fil: Kumfor, Fiona. The University Of Sydney; Australia  
dc.description.fil
Fil: Reyes, Pablo. Pontificia Universidad Javeriana; Colombia. Hospital Universitario Fundación Santa Fe; Colombia. Hospital Universitario San Ignacio; Colombia  
dc.description.fil
Fil: Matallana, Diana. Pontificia Universidad Javeriana; Colombia. Hospital Universitario Fundación Santa Fe; Colombia. Hospital Universitario San Ignacio; Colombia  
dc.description.fil
Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencias Cognitivas y Traslacional; Argentina  
dc.description.fil
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Autónoma del Caribe; Colombia. Universidad Adolfo Ibañez; Chile  
dc.journal.title
Journal Neuroimag  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811920310077  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroimage.2020.117522