Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Enrique Ernesto  
dc.date.available
2017-05-17T21:13:54Z  
dc.date.issued
2006-12  
dc.identifier.citation
Alvarez, Enrique Ernesto; Maximum likelihood estimation in alternating renewal processes under window censoring; Taylor & Francis; Stochastic Models; 22; 1; 12-2006; 55-76  
dc.identifier.issn
1532-6349  
dc.identifier.uri
http://hdl.handle.net/11336/16618  
dc.description.abstract
Consider a process that jumps back and forth between two states, with random times spent in between. Suppose the durations of subsequent on and off states are i.i.d. and that the process has started far in the past, so it has achieved stasis. We estimate the sojourn distributions through maximum likelihood when data consist of several realizations observed over windows of fixed length. For discrete and continuous time Markov chains, we also examine if there is any loss of efficiency incurred when ignoring the stationarity structure in the estimation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Alternating Renewal Process  
dc.subject
Asymptotic Efficiency  
dc.subject
Markov Chain  
dc.subject
Regenerative Process  
dc.subject
Window Censoring  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Maximum likelihood estimation in alternating renewal processes under window censoring  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-17T17:47:16Z  
dc.identifier.eissn
1532-4214  
dc.journal.volume
22  
dc.journal.number
1  
dc.journal.pagination
55-76  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Alvarez, Enrique Ernesto. University Of Connecticut; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Stochastic Models  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15326340500481739  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/15326340500481739