Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Enrique Ernesto
dc.date.available
2017-05-17T21:13:54Z
dc.date.issued
2006-12
dc.identifier.citation
Alvarez, Enrique Ernesto; Maximum likelihood estimation in alternating renewal processes under window censoring; Taylor & Francis; Stochastic Models; 22; 1; 12-2006; 55-76
dc.identifier.issn
1532-6349
dc.identifier.uri
http://hdl.handle.net/11336/16618
dc.description.abstract
Consider a process that jumps back and forth between two states, with random times spent in between. Suppose the durations of subsequent on and off states are i.i.d. and that the process has started far in the past, so it has achieved stasis. We estimate the sojourn distributions through maximum likelihood when data consist of several realizations observed over windows of fixed length. For discrete and continuous time Markov chains, we also examine if there is any loss of efficiency incurred when ignoring the stationarity structure in the estimation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Alternating Renewal Process
dc.subject
Asymptotic Efficiency
dc.subject
Markov Chain
dc.subject
Regenerative Process
dc.subject
Window Censoring
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Maximum likelihood estimation in alternating renewal processes under window censoring
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-17T17:47:16Z
dc.identifier.eissn
1532-4214
dc.journal.volume
22
dc.journal.number
1
dc.journal.pagination
55-76
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Alvarez, Enrique Ernesto. University Of Connecticut; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Stochastic Models
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15326340500481739
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/15326340500481739
Archivos asociados