Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Single-step genomic prediction of Eucalyptus dunnii using different identity-by-descent and identity-by-state relationship matrices

Jurcic, Esteban JavierIcon ; Villalba, Pamela VictoriaIcon ; Pathauer, Pablo S.; Palazzini, Dino Andrés; Oberschelp, Gustavo Pedro Javier; Harrand, Leonel; Garcia, Martín NahuelIcon ; Aguirre, Natalia CristinaIcon ; Acuña, Cintia VanesaIcon ; Martinez, Maria Carolina; Rivas, Juan GabrielIcon ; Cisneros, Esteban FelipeIcon ; López, Juan Adolfo; Marcucci Poltri, Susana Noemí; Munilla Leguizamon, SebastianIcon ; Cappa, Eduardo PabloIcon
Fecha de publicación: 08/2021
Editorial: Nature Publishing Group
Revista: Heredity
ISSN: 0018-067X
e-ISSN: 1365-2540
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Biotecnología Agropecuaria

Resumen

Genomic selection based on the single-step genomic best linear unbiased prediction (ssGBLUP) approach is becoming an important tool in forest tree breeding. The quality of the variance components and the predictive ability of the estimated breeding values (GEBV) depends on how well marker-based genomic relationships describe the actual genetic relationships at unobserved causal loci. We investigated the performance of GEBV obtained when fitting models with genomic covariance matrices based on two identity-by-descent (IBD) and two identity-by-state (IBS) relationship measures. Multiple-trait multiple-site ssGBLUP models were fitted to diameter and stem straightness in five open-pollinated progeny trials of Eucalyptus dunnii, genotyped using the EUChip60K. We also fitted the conventional ABLUP model with a pedigree-based covariance matrix. Estimated relationships from the IBD estimators displayed consistently lower standard deviations than those from the IBS approaches. Although ssGBLUP based in IBS estimators resulted in higher trait-site heritabilities, the gain in accuracy of the relationships using IBD estimators has resulted in higher predictive ability and lower bias of GEBV, especially for low-heritability trait-site. ssGBLUP based on IBS and IBD approaches performed considerably better than the traditional ABLUP. In summary, our results advocate the use of the ssGBLUP approach jointly with the IBD relationship matrix in open-pollinated forest tree evaluation.
Palabras clave: IBD , IBS , SSGBLUP
Ver el registro completo
 
Archivos asociados
Tamaño: 2.358Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166132
URL: http://www.nature.com/articles/s41437-021-00450-9
DOI: https://doi.org/10.1038/s41437-021-00450-9
Colecciones
Articulos (IABIMO)
Articulos de INSTITUTO DE AGROBIOTECNOLOGIA Y BIOLOGIA MOLECULAR
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Jurcic, Esteban Javier; Villalba, Pamela Victoria; Pathauer, Pablo S.; Palazzini, Dino Andrés; Oberschelp, Gustavo Pedro Javier; et al.; Single-step genomic prediction of Eucalyptus dunnii using different identity-by-descent and identity-by-state relationship matrices; Nature Publishing Group; Heredity; 127; 2; 8-2021; 176-189
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES