Mostrar el registro sencillo del ítem

dc.contributor.author
Castello, Pablo Raul  
dc.contributor.author
Jiménez, Pablo Javier  
dc.contributor.author
Martino, Carlos F.  
dc.date.available
2022-08-19T14:58:32Z  
dc.date.issued
2021-07  
dc.identifier.citation
Castello, Pablo Raul; Jiménez, Pablo Javier; Martino, Carlos F.; The role of pulsed electromagnetic fields on the radical pair mechanism; Wiley; Bioelectromagnetics.; 42; 6; 7-2021; 491-500  
dc.identifier.issn
0197-8462  
dc.identifier.uri
http://hdl.handle.net/11336/166098  
dc.description.abstract
In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
MAGNETIC EFFECTS  
dc.subject
PEMFS  
dc.subject
RADICAL PAIR MECHANISM  
dc.subject
REACTIVE OXYGEN SPECIES  
dc.subject
SPIN BIOCHEMISTRY  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The role of pulsed electromagnetic fields on the radical pair mechanism  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-16T18:17:16Z  
dc.journal.volume
42  
dc.journal.number
6  
dc.journal.pagination
491-500  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Castello, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina  
dc.description.fil
Fil: Jiménez, Pablo Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina  
dc.description.fil
Fil: Martino, Carlos F.. University Johns Hopkins; Estados Unidos  
dc.journal.title
Bioelectromagnetics.  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bem.22358  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/bem.22358