Mostrar el registro sencillo del ítem
dc.contributor.author
Mateos, Diego Martín
dc.contributor.author
Gomez Ramirez, Jaime David
dc.contributor.author
Rosso, Osvaldo Anibal
dc.date.available
2022-08-17T18:01:50Z
dc.date.issued
2021-05
dc.identifier.citation
Mateos, Diego Martín; Gomez Ramirez, Jaime David; Rosso, Osvaldo Anibal; Using time causal quantifiers to characterize sleep stages; Elsevier; Chaos, Solitons And Fractals; 146; 5-2021; 1-10
dc.identifier.issn
0960-0779
dc.identifier.uri
http://hdl.handle.net/11336/165900
dc.description.abstract
Sleep plays a substantial role in daily cognitive performance, mood, and memory. The study of sleep has attracted the interest of neuroscientists, clinicians and the overall population, with an increasing number of adults suffering from insufficient amounts of sleep. Sleep is an activity composed of different stages whose temporal dynamics, cycles and interdependencies are not fully understood. Healthy body function and personal well being, however, depends on the proper unfolding and continuance of the sleep cycles. The characterization of the different sleep stages can be undertaken with the development of biomarkers derived from sleep recording. For this purpose, in this work we analyzed single-channel EEG signals from 106 healthy subjects. The signals were quantified using the permutation vector approach using five different-information theoretic measures: i) Shannon's entropy, ii) MPR statistical complexity, iii) Fisher information, iv) Renyí Min-entropy and v) Lempel-Ziv complexity. The results show that all five information theory-based measures make it possible to quantify and classify the underlying dynamics of the different sleep stages. In addition to this, we combine these measures to show that planes containing pairs of measures, such as the plane composed of Lempel-Ziv and Shannon, have a better performance for differentiating sleep states than measures used individually for the same purpose.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN DYNAMICS
dc.subject
COMPLEXITY
dc.subject
ENTROPY
dc.subject
INFORMATION QUANTIFIERS
dc.subject
SLEEP
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Using time causal quantifiers to characterize sleep stages
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-12T10:06:53Z
dc.journal.volume
146
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología; Argentina
dc.description.fil
Fil: Gomez Ramirez, Jaime David. Instituto de Salud Carlos III; España
dc.description.fil
Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil
dc.journal.title
Chaos, Solitons And Fractals
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077921001508
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chaos.2021.110798
Archivos asociados