Artículo
Metal-Pseudomonas veronii 2E Interactions as Strategies for Innovative Process Developments in Environmental Biotechnology
Busnelli, María Pía
; Lazzarini Behrmann, Irene Constanza; Ferreira, Maria Laura
; Candal, Roberto Jorge
; Ramírez, Silvana Andrea María; Vullo, Diana Lia
Fecha de publicación:
03/2021
Editorial:
Frontiers Media
Revista:
Frontiers in Microbiology
ISSN:
1664-302X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The increase of industrial discharges is the first cause of the contamination of water bodies. The bacterial survival strategies contribute to the equilibrium restoration of ecosystems being useful tools for the development of innovative environmental biotechnologies. The aim of this work was to study the Cu(II) and Cd(II) biosensing, removal and recovery, mediated by whole cells, exopolymeric substances (EPS) and biosurfactants of the indigenous and non-pathogenic Pseudomonas veronii 2E to be applied in the development of wastewater biotreatments. An electrochemical biosensor was developed using P. veronii 2E biosorption mechanism mediated by the cell surface associated to bound exopolymeric substances. A Carbon Paste Electrode modified with P. veronii 2E (CPEM) was built using mineral oil, pre-washed graphite power and 24 h-dried cells. For Cd(II) quantification the CPEM was immersed in Cd(II) (1–25 μM), detected by Square Wave Voltammetry. A similar procedure was used for 1–50 μM Cu(II). Regarding Cd(II), removal mediated by immobilized EPS was tested in a 50 ml bioreactor with 0.13 mM Cd(II), pH 7.5. A 54% metal retention by EPS was achieved after 7 h of continuous operation, while a 40% was removed by a control resin. In addition, surfactants produced by P. veronii 2E were studied for recovery of Cd(II) adsorbed on diatomite, obtaining a 36% desorption efficiency at pH 6.5. Cu(II) adsorption from a 1 mM solution was tested using P. veronii 2E purified soluble EPS in 50 mL- batch reactors (pH = 5.5, 32°C). An 80% of the initial Cu(II) was retained using 1.04 g immobilized EPS. Focusing on metal recovery, Cu nanoparticles (NPs) biosynthesis by P. veronii 2E was carried out in Cu(II)-PYG Broth at 25°C for 5 days. Extracellular CuNPs were characterized by UV-Vis spectral analysis while both extracellular and intracellular NPs were analyzed by SEM and TEM techniques. Responses of P. veronii 2E and its products as biosurfactants, bound and soluble EPS allowed Cu(II) and Cd(II) removal, recovery and biosensing resulting in a multiple and versatile tool for sustainable wastewater biotreatments.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IIIA)
Articulos de INSTITUTO DE INVESTIGACION E INGENIERIA AMBIENTAL
Articulos de INSTITUTO DE INVESTIGACION E INGENIERIA AMBIENTAL
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Busnelli, María Pía; Lazzarini Behrmann, Irene Constanza; Ferreira, Maria Laura; Candal, Roberto Jorge; Ramírez, Silvana Andrea María; et al.; Metal-Pseudomonas veronii 2E Interactions as Strategies for Innovative Process Developments in Environmental Biotechnology; Frontiers Media; Frontiers in Microbiology; 12; 3-2021; 1-13
Compartir
Altmétricas