Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

For whom should psychotherapy focus on problem coping? A machine learning algorithm for treatment personalization

Gómez Penedo, Juan MartínIcon ; Schwartz, Brian; Giesemann, Julia; Rubel, Julian A.; Deisenhofer, Anne-Katharina; Lutz, Wolfgang
Fecha de publicación: 05/2021
Editorial: Taylor & Francis
Revista: Psychotherapy Research
e-ISSN: 1468-4381
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Psicología

Resumen

Objective: We aimed to develop and test an algorithm for individual patient predictions of problem coping experiences (PCE) (i.e., patients’ understanding and ability to deal with their problems) effects in cognitive–behavioral therapy. Method: In an outpatient sample with a variety of diagnoses (n=1010), we conducted Dynamic Structural Equation Modelling to estimate within-patient cross-lagged PCE effects on outcome during the first ten sessions. In a randomly selected training sample (2/3 of the cases), we tried different machine learning algorithms (i.e., ridge regression, LASSO, elastic net, and random forest) to predict PCE effects (i.e., the degree to which PCE was a time-lagged predictor of symptoms), using baseline demographic, diagnostic, and clinically-relevant patient features. Then, we validated the best algorithm on a test sample (1/3 of the cases). Results: The random forest algorithm performed best, explaining 14.7% of PCE effects variance in the training set. The results remained stable in the test set, explaining 15.4% of PCE effects variance. Conclusions: The results show the suitability to perform individual predictions of process effects, based on patients’ initial information. If the results are replicated, the algorithm might have the potential to be implemented in clinical practice by integrating it into monitoring and therapist feedback systems.
Palabras clave: BASELINE PATIENT CHARACTERISTICS , COGNITIVE-BEHAVIORAL THERAPY (CBT) , INDIVIDUAL PREDICTIONS , MACHINE LEARNING , PROBLEM COPING EXPERIENCES
Ver el registro completo
 
Archivos asociados
Tamaño: 978.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/165438
DOI: http://dx.doi.org/10.1080/10503307.2021.1930242
URL: https://www.tandfonline.com/doi/full/10.1080/10503307.2021.1930242
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Gómez Penedo, Juan Martín; Schwartz, Brian; Giesemann, Julia ; Rubel, Julian A.; Deisenhofer, Anne-Katharina; et al.; For whom should psychotherapy focus on problem coping? A machine learning algorithm for treatment personalization; Taylor & Francis; Psychotherapy Research; 32; 2; 5-2021; 151-164
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES