Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Agustín  
dc.contributor.author
Svarc, Marcela  
dc.date.available
2022-08-12T13:05:39Z  
dc.date.issued
2021-03  
dc.identifier.citation
Alvarez, Agustín; Svarc, Marcela; A variable selection procedure for depth measures; Springer; Asta-advances In Statistical Analysis; 105; 2; 3-2021; 247-271  
dc.identifier.issn
1863-818X  
dc.identifier.uri
http://hdl.handle.net/11336/165338  
dc.description.abstract
We herein introduce variable selection procedures based on depth similarity, aimed at identifying a small subset of variables that can better explain the depth assigned to each point in space. Our study is not intended to deal with the case of high-dimensional data. Identifying noisy and dependent variables helps us understand the underlying distribution of a given dataset. The asymptotic behaviour of the proposed methods and numerical aspects concerning the computational burden are studied. Furthermore, simulations and a real data example are analysed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA DEPTH  
dc.subject
DIMENSION REDUCTION  
dc.subject
FEATURE EXTRACTION  
dc.subject
MULTIVARIATE DATA ANALYSIS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A variable selection procedure for depth measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-09T17:33:20Z  
dc.journal.volume
105  
dc.journal.number
2  
dc.journal.pagination
247-271  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Alvarez, Agustín. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina  
dc.journal.title
Asta-advances In Statistical Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10182-021-00391-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10182-021-00391-y