Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Agustín
dc.contributor.author
Svarc, Marcela
dc.date.available
2022-08-12T13:05:39Z
dc.date.issued
2021-03
dc.identifier.citation
Alvarez, Agustín; Svarc, Marcela; A variable selection procedure for depth measures; Springer; Asta-advances In Statistical Analysis; 105; 2; 3-2021; 247-271
dc.identifier.issn
1863-818X
dc.identifier.uri
http://hdl.handle.net/11336/165338
dc.description.abstract
We herein introduce variable selection procedures based on depth similarity, aimed at identifying a small subset of variables that can better explain the depth assigned to each point in space. Our study is not intended to deal with the case of high-dimensional data. Identifying noisy and dependent variables helps us understand the underlying distribution of a given dataset. The asymptotic behaviour of the proposed methods and numerical aspects concerning the computational burden are studied. Furthermore, simulations and a real data example are analysed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DATA DEPTH
dc.subject
DIMENSION REDUCTION
dc.subject
FEATURE EXTRACTION
dc.subject
MULTIVARIATE DATA ANALYSIS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A variable selection procedure for depth measures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-09T17:33:20Z
dc.journal.volume
105
dc.journal.number
2
dc.journal.pagination
247-271
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Alvarez, Agustín. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.description.fil
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
dc.journal.title
Asta-advances In Statistical Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10182-021-00391-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10182-021-00391-y
Archivos asociados