Mostrar el registro sencillo del ítem
dc.contributor.author
Rodríguez Colmeiro, Ramiro Germán
dc.contributor.author
Verrastro, Claudio Abel
dc.contributor.author
Minsky, Daniel Mauricio
dc.contributor.author
Grosges, Thomas
dc.date.available
2022-08-11T17:35:47Z
dc.date.issued
2021-04
dc.identifier.citation
Rodríguez Colmeiro, Ramiro Germán; Verrastro, Claudio Abel; Minsky, Daniel Mauricio; Grosges, Thomas; Towards a whole body [18F] FDG positron emission tomography attenuation correction map synthesizing using deep neural networks; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 21; 1; 4-2021; 29-41
dc.identifier.issn
1666-6046
dc.identifier.uri
http://hdl.handle.net/11336/165254
dc.description.abstract
The correction of attenuation effects in Positron Emission Tomography (PET) imaging is fundamental to ob-tain a correct radiotracer distribution. However direct measurement of this attenuation map is not error-free and normally results in additional ionization radiation dose to the patient. Here, we explore the task of whole body attenuation map generation using 3D deep neural networks. We analyze the advantages that an adversarial training can provide to such models. The networks are trained to learn the mapping from non attenuation corrected [18F]-fluorodeoxyglucose PET images to a synthetic Computerized Tomography (sCT) and also to label the input voxel tissue. Then the sCT image is further refined using an adversarial training scheme to recover higher frequency details and lost structures using context information. This work is trained and tested on public available datasets, containing several PET images from different scanners with different ra-diotracer administration and reconstruction modalities. The network is trained with 108 samples and validated on 10 samples. The sCT generation was tested on 133 samples from 8 distinct datasets. The resulting mean absolute error of the tested networks is 96 ± 20 HU and 103 ± 18 HU with a peak signal to noise ratio of 19.3 ± 1.7 dB and 18.6 ± 1.5 dB, for the base model and adversarial model respectively. The attenuation correction is tested by means of attenuation sinograms, obtaining a line of response attenuation mean error lower than 1% with a standard deviation lower than 8%. The proposed deep learning topologies are capable of generating whole body attenuation maps from uncorrected PET image data. Moreover, the accuracy of both methods holds in the presence of data from multiple sources and modalities and are trained on publicly available datasets. Finally, while the adversarial layer enhances visual appearance of the produced samples, the 3D U-Net achieves higher metric performance.
dc.description.abstract
La corrección de los efectos de la atenuación en las imágenes de Tomografía por Emisión de Positrones (PET) es fundamental para obtener la correcta distribución del radio trazador. Sin embargo la medición directa del mapa de atenuación no esta libre de errores y normalmente resulta en la absorción de una dosis superior de radiación ionizante por parte del paciente. Aquí, exploramos la tarea de la generación del mapa de atenuación de cuerpo completo usando redes neuronales profundas 3D. Se analizan las ventajas que un entrenamiento adversario puede proveer a estos modelos. Las redes son entrenadas para aprender la conversión desde una imagen de [18F]- fluorodeoxyglucosa PET sin corrección de atenuación a una imagen sintética de Tomografía Computada (sCT) y además obtener una etiqueta del tipo de tejido ´ en los voxeles de la imagen. Luego la imagen de sCT es refinada usando un entrenamiento de tipo adversario para recobrar detalles de alta frecuencia y estructuras perdidas usando información contextual. Este trabajo es entrenado y probado sobre conjuntos de datos públicos, conteniendo distintas imágenes PET de diferentes tomógrafos, distintos modos de administración de dosis y modos de reconstrucción. La red es entrenada con 108 muestras y validada con 10 muestras. La generación del sCT fue probada con ´ 133 muestras de 8 conjuntos de datos independientes. El error medio absoluto de las redes es de 96±20 HU y 103±18 HU con una relación señal ruido pico de ˜ 103 ± 18 HU y 18.6±1.5 dB para el modelo base y el modelo adversario respectivamente. La corrección de atenuación es probada por medio de sinogramas, obteniendo un error medio en la atenuación de las líneas de respuesta menor al 1% con un desvió estándar menor al 8%. Las topologías de aprendizaje profundo propuestas son capaces de generar mapas de atenuación de cuerpo completo a partir de imágenes PET sin corregir. Además, la exactitud de los métodos se sostiene en presencia de datos de múltiples fuentes y modalidades y son entrenadas en conjuntos de datos públicos. Finalmente, mientras se observa que el entrenamiento adversario mejora la apariencia visual de los mapas generados, la topologa 3D U-Net obtiene mejor rendimiento en las métricas.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Universidad Nacional de La Plata. Facultad de Informática
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
ATTENUATION CORRECTION
dc.subject
DEEP LEARNING
dc.subject
GENERATIVE MODELS
dc.subject
POSITRON EMISSION TOMOGRAPHY
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Towards a whole body [18F] FDG positron emission tomography attenuation correction map synthesizing using deep neural networks
dc.title
Hacia la sinterización de mapas de atenuación de cuerpo completo para tomografía por emisión de positrones de [18F] FDG usando redes neuronales profundas
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-11T13:08:10Z
dc.identifier.eissn
1666-6038
dc.journal.volume
21
dc.journal.number
1
dc.journal.pagination
29-41
dc.journal.pais
Argentina
dc.journal.ciudad
La Plata
dc.description.fil
Fil: Rodríguez Colmeiro, Ramiro Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Technologie de Troyes; Francia. Universidad Tecnológica Nacional; Argentina. Comisión Nacional de Energía Atómica; Argentina
dc.description.fil
Fil: Verrastro, Claudio Abel. Universidad Tecnológica Nacional; Argentina. Comisión Nacional de Energía Atómica; Argentina
dc.description.fil
Fil: Minsky, Daniel Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
dc.description.fil
Fil: Grosges, Thomas. Universite de Technologie de Troyes; Francia
dc.journal.title
Journal of Computer Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1519
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.24215/16666038.21.E4
Archivos asociados