Mostrar el registro sencillo del ítem
dc.contributor.author
Roldán, Juan B.
dc.contributor.author
González Cordero, Gerardo
dc.contributor.author
Picos, Rodrigo
dc.contributor.author
Miranda, Enrique
dc.contributor.author
Palumbo, Félix Roberto Mario

dc.contributor.author
Jiménez Molinos, Francisco
dc.contributor.author
Moreno, Enrique
dc.contributor.author
Maldonado, David

dc.contributor.author
Baldomá, Santiago B.
dc.contributor.author
Moner Al Chawa, Mohamad
dc.contributor.author
de Benito, Carol
dc.contributor.author
Stavrinides, Stavros G.
dc.contributor.author
Suñé, Jordi
dc.contributor.author
Chua, Leon O.
dc.date.available
2022-08-11T16:07:24Z
dc.date.issued
2021-05
dc.identifier.citation
Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-46
dc.identifier.issn
2079-4991
dc.identifier.uri
http://hdl.handle.net/11336/165239
dc.description.abstract
Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CIRCUIT SIMULATION
dc.subject
COMPACT MODELING
dc.subject
HEAT EQUATION
dc.subject
NANODEVICES
dc.subject
RESISTIVE MEMORIES
dc.subject
RESISTIVE SWITCHING
dc.subject
THERMAL CONDUCTIVITY
dc.subject
THERMAL MODEL
dc.subject.classification
Física de los Materiales Condensados

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
On the thermal models for resistive random access memory circuit simulation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-11T13:05:13Z
dc.journal.volume
11
dc.journal.number
5
dc.journal.pagination
1-46
dc.journal.pais
Estados Unidos

dc.journal.ciudad
New York
dc.description.fil
Fil: Roldán, Juan B.. Universidad de Granada; España
dc.description.fil
Fil: González Cordero, Gerardo. Universidad de Granada; España
dc.description.fil
Fil: Picos, Rodrigo. University of Balearic Islands; España
dc.description.fil
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
dc.description.fil
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Jiménez Molinos, Francisco. Universidad de Granada; España
dc.description.fil
Fil: Moreno, Enrique. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Maldonado, David. Universidad de Granada; España
dc.description.fil
Fil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
dc.description.fil
Fil: Moner Al Chawa, Mohamad. Technische Universität Dresden; Alemania
dc.description.fil
Fil: de Benito, Carol. University of Balearic Islands; España
dc.description.fil
Fil: Stavrinides, Stavros G.. Thermi University Campus; Grecia
dc.description.fil
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
dc.description.fil
Fil: Chua, Leon O.. University of California; Estados Unidos
dc.journal.title
Nanomaterials

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/nano11051261
Archivos asociados