Artículo
Anisotropic p, q-laplacian equations when p goes to 1
Fecha de publicación:
12/2010
Editorial:
Elsevier
Revista:
Journal Of Nonlinear Analysis
ISSN:
0362-546X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p–Laplacian equation with respect to a group of variables and as the q–Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1–Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.
Palabras clave:
Anisotropic Problems
,
-Laplacian Equation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Mercaldo, A.; Rossi, Julio Daniel; Segura de León, S.; Trombetti, C.; Anisotropic p, q-laplacian equations when p goes to 1; Elsevier; Journal Of Nonlinear Analysis; 73; 11; 12-2010; 3546-3560
Compartir
Altmétricas