Mostrar el registro sencillo del ítem
dc.contributor.author
Cook, R. Dennis
dc.contributor.author
Forzani, Liliana Maria
dc.date.available
2022-08-10T15:43:01Z
dc.date.issued
2021-06
dc.identifier.citation
Cook, R. Dennis; Forzani, Liliana Maria; PLS regression algorithms in the presence of nonlinearity; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 213; 6-2021; 1-13
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/164987
dc.description.abstract
It has long been emphasized that standard PLS regression algorithms like NIPALS and SIMPLS are not suitable for regressions in which there is a nonlinear relationship between the response and the predictors. We show that this conclusion, while strictly true, fails to recognize that aspects of these algorithms remain serviceable in the presence of nonlinearity. In particular, the dimension reduction step of these standard algorithms is serviceable under linear and nonlinear relationships, while the predictive step is not. Additionally, we propose graphical methods for diagnosing nonlinearity, develop a novel method of nonlinear prediction based on reduced predictors arising from standard PLS regression algorithms and demonstrate the effectiveness of our approach in two case studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CENTRAL MEAN SUBSPACE
dc.subject
ENVELOPES
dc.subject
GRAPHICAL DIAGNOSTICS
dc.subject
KRYLOV SEQUENCES
dc.subject
NIPALS
dc.subject
SIMPLS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
PLS regression algorithms in the presence of nonlinearity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-08T15:14:11Z
dc.journal.volume
213
dc.journal.pagination
1-13
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169743921000757
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2021.104307
Archivos asociados