Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández Vidal, Tomás Ariel
dc.contributor.author
Galicer, Daniel Eric
dc.contributor.author
Mereb, Martin
dc.contributor.author
Sevilla Peris, Pablo
dc.date.available
2022-08-10T14:09:07Z
dc.date.issued
2021-03
dc.identifier.citation
Fernández Vidal, Tomás Ariel; Galicer, Daniel Eric; Mereb, Martin; Sevilla Peris, Pablo; Hardy space of translated Dirichlet series; Springer; Mathematische Zeitschrift; 299; 1-2; 3-2021; 1103-1129
dc.identifier.issn
0025-5874
dc.identifier.uri
http://hdl.handle.net/11336/164939
dc.description.abstract
We study the Hardy space of translated Dirichlet series H+. It consists on those Dirichlet series ∑ ann-s such that for some (equivalently, every) 1 ≤ p< ∞, the translation ∑ann-(s+1σ) belongs to the Hardy space Hp for every σ> 0. We prove that this set, endowed with the topology induced by the seminorms {‖·‖2,k}k∈N (where ‖ ∑ ann-s‖ 2,k is defined as ‖∑ann-(s+1k)‖H2), is a Fréchet space which is Schwartz and non nuclear. Moreover, the Dirichlet monomials {n-s}n∈N are an unconditional Schauder basis of H+. We also explore the connection of this new space with spaces of holomorphic functions on infinite-dimensional spaces. In the spirit of Gordon and Hedenmalm’s work, we completely characterize the composition operator on the Hardy space of translated Dirichlet series. Moreover, we study the superposition operators on H+ and show that every polynomial defines an operator of this kind. We present certain sufficient conditions on the coefficients of an entire function to define a superposition operator. Relying on number theory techniques we exhibit some examples which do not provide superposition operators. We finally look at the action of the differentiation and integration operators on these spaces.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
COMPOSITION OPERATOR
dc.subject
DIRICHLET SERIES
dc.subject
FRÉCHET SPACE
dc.subject
HARDY SPACE
dc.subject
SUPERPOSITION OPERATOR
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hardy space of translated Dirichlet series
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-28T14:14:36Z
dc.identifier.eissn
1432-1823
dc.journal.volume
299
dc.journal.number
1-2
dc.journal.pagination
1103-1129
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Fernández Vidal, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Mereb, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
dc.journal.title
Mathematische Zeitschrift
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-021-02700-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-021-02700-2
Archivos asociados