Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández Vidal, Tomás Ariel  
dc.contributor.author
Galicer, Daniel Eric  
dc.contributor.author
Mereb, Martin  
dc.contributor.author
Sevilla Peris, Pablo  
dc.date.available
2022-08-10T14:09:07Z  
dc.date.issued
2021-03  
dc.identifier.citation
Fernández Vidal, Tomás Ariel; Galicer, Daniel Eric; Mereb, Martin; Sevilla Peris, Pablo; Hardy space of translated Dirichlet series; Springer; Mathematische Zeitschrift; 299; 1-2; 3-2021; 1103-1129  
dc.identifier.issn
0025-5874  
dc.identifier.uri
http://hdl.handle.net/11336/164939  
dc.description.abstract
We study the Hardy space of translated Dirichlet series H+. It consists on those Dirichlet series ∑ ann-s such that for some (equivalently, every) 1 ≤ p< ∞, the translation ∑ann-(s+1σ) belongs to the Hardy space Hp for every σ> 0. We prove that this set, endowed with the topology induced by the seminorms {‖·‖2,k}k∈N (where ‖ ∑ ann-s‖ 2,k is defined as ‖∑ann-(s+1k)‖H2), is a Fréchet space which is Schwartz and non nuclear. Moreover, the Dirichlet monomials {n-s}n∈N are an unconditional Schauder basis of H+. We also explore the connection of this new space with spaces of holomorphic functions on infinite-dimensional spaces. In the spirit of Gordon and Hedenmalm’s work, we completely characterize the composition operator on the Hardy space of translated Dirichlet series. Moreover, we study the superposition operators on H+ and show that every polynomial defines an operator of this kind. We present certain sufficient conditions on the coefficients of an entire function to define a superposition operator. Relying on number theory techniques we exhibit some examples which do not provide superposition operators. We finally look at the action of the differentiation and integration operators on these spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
COMPOSITION OPERATOR  
dc.subject
DIRICHLET SERIES  
dc.subject
FRÉCHET SPACE  
dc.subject
HARDY SPACE  
dc.subject
SUPERPOSITION OPERATOR  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hardy space of translated Dirichlet series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:14:36Z  
dc.identifier.eissn
1432-1823  
dc.journal.volume
299  
dc.journal.number
1-2  
dc.journal.pagination
1103-1129  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Fernández Vidal, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Mereb, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España  
dc.journal.title
Mathematische Zeitschrift  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-021-02700-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-021-02700-2