Mostrar el registro sencillo del ítem
dc.contributor.author
Salvagiotti, Fernando
dc.contributor.author
Magnano, Luciana Ines
dc.contributor.author
Ortez, Osler
dc.contributor.author
Enrico, Juan Martín
dc.contributor.author
Barraco, Mirian Raquel
dc.contributor.author
Barbagelata, Pedro Aníbal
dc.contributor.author
Condori, Alicia Adelina
dc.contributor.author
Di Mauro, Guido
dc.contributor.author
Manlla, Amalia Graciela
dc.contributor.author
Rotundo, José Luis
dc.contributor.author
Garcia, Fernando Oscar
dc.contributor.author
Ferrari, Manuel
dc.contributor.author
Gudelj, Vicente
dc.contributor.author
Ciampitti, Ignacio Antonio
dc.date.available
2022-08-09T19:15:01Z
dc.date.issued
2021-07
dc.identifier.citation
Salvagiotti, Fernando; Magnano, Luciana Ines; Ortez, Osler; Enrico, Juan Martín; Barraco, Mirian Raquel; et al.; Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean; Elsevier Science; European Journal of Agronomy; 127; 7-2021; 1-11
dc.identifier.issn
1161-0301
dc.identifier.uri
http://hdl.handle.net/11336/164821
dc.description.abstract
Estimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INTERNAL EFFICIENCY
dc.subject
NUTRIENT HARVEST INDEX
dc.subject
NUTRIENT UPTAKE
dc.subject
QUANTILE REGRESSION
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-08T15:14:29Z
dc.journal.volume
127
dc.journal.pagination
1-11
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Magnano, Luciana Ines. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Ortez, Osler. Universidad de Nebraska - Lincoln; Estados Unidos
dc.description.fil
Fil: Enrico, Juan Martín. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Barraco, Mirian Raquel. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria General Villegas. Agencia de Extension Rural General Villegas.; Argentina
dc.description.fil
Fil: Barbagelata, Pedro Aníbal. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Paraná; Argentina
dc.description.fil
Fil: Condori, Alicia Adelina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Di Mauro, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Corteva Agriscience; Estados Unidos
dc.description.fil
Fil: Manlla, Amalia Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Rotundo, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina. Corteva Agriscience; Estados Unidos
dc.description.fil
Fil: Garcia, Fernando Oscar. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
dc.description.fil
Fil: Ferrari, Manuel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
dc.description.fil
Fil: Gudelj, Vicente. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Marcos Juárez; Argentina
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos
dc.journal.title
European Journal of Agronomy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1161030121000617
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eja.2021.126289
Archivos asociados