Mostrar el registro sencillo del ítem

dc.contributor.author
Salvagiotti, Fernando  
dc.contributor.author
Magnano, Luciana Ines  
dc.contributor.author
Ortez, Osler  
dc.contributor.author
Enrico, Juan Martín  
dc.contributor.author
Barraco, Mirian Raquel  
dc.contributor.author
Barbagelata, Pedro Aníbal  
dc.contributor.author
Condori, Alicia Adelina  
dc.contributor.author
Di Mauro, Guido  
dc.contributor.author
Manlla, Amalia Graciela  
dc.contributor.author
Rotundo, José Luis  
dc.contributor.author
Garcia, Fernando Oscar  
dc.contributor.author
Ferrari, Manuel  
dc.contributor.author
Gudelj, Vicente  
dc.contributor.author
Ciampitti, Ignacio Antonio  
dc.date.available
2022-08-09T19:15:01Z  
dc.date.issued
2021-07  
dc.identifier.citation
Salvagiotti, Fernando; Magnano, Luciana Ines; Ortez, Osler; Enrico, Juan Martín; Barraco, Mirian Raquel; et al.; Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean; Elsevier Science; European Journal of Agronomy; 127; 7-2021; 1-11  
dc.identifier.issn
1161-0301  
dc.identifier.uri
http://hdl.handle.net/11336/164821  
dc.description.abstract
Estimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INTERNAL EFFICIENCY  
dc.subject
NUTRIENT HARVEST INDEX  
dc.subject
NUTRIENT UPTAKE  
dc.subject
QUANTILE REGRESSION  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-08T15:14:29Z  
dc.journal.volume
127  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina  
dc.description.fil
Fil: Magnano, Luciana Ines. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina  
dc.description.fil
Fil: Ortez, Osler. Universidad de Nebraska - Lincoln; Estados Unidos  
dc.description.fil
Fil: Enrico, Juan Martín. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina  
dc.description.fil
Fil: Barraco, Mirian Raquel. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria General Villegas. Agencia de Extension Rural General Villegas.; Argentina  
dc.description.fil
Fil: Barbagelata, Pedro Aníbal. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Paraná; Argentina  
dc.description.fil
Fil: Condori, Alicia Adelina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina  
dc.description.fil
Fil: Di Mauro, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Corteva Agriscience; Estados Unidos  
dc.description.fil
Fil: Manlla, Amalia Graciela. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina  
dc.description.fil
Fil: Rotundo, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina. Corteva Agriscience; Estados Unidos  
dc.description.fil
Fil: Garcia, Fernando Oscar. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina  
dc.description.fil
Fil: Ferrari, Manuel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Gudelj, Vicente. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Marcos Juárez; Argentina  
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos  
dc.journal.title
European Journal of Agronomy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1161030121000617  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eja.2021.126289