Mostrar el registro sencillo del ítem
dc.contributor.author
Hojamberdiev, Mirabbos
dc.contributor.author
Mora Hernandez, J. Manuel
dc.contributor.author
Vargas Balda, Ronald Eduardo
dc.contributor.author
Yamakata, Akira
dc.contributor.author
Yubuta, Kunio
dc.contributor.author
Heppke, Eva Maria
dc.contributor.author
Torres Martínez, Leticia M.
dc.contributor.author
Teshima, Katsuya
dc.contributor.author
Lerch, Martin
dc.date.available
2022-08-09T17:29:49Z
dc.date.issued
2021-09
dc.identifier.citation
Hojamberdiev, Mirabbos; Mora Hernandez, J. Manuel; Vargas Balda, Ronald Eduardo; Yamakata, Akira; Yubuta, Kunio; et al.; Time-Retrenched Synthesis of BaTaO2N by Localizing an NH3 Delivery System for Visible-Light-Driven Photoelectrochemical Water Oxidation at Neutral pH: Solid-State Reaction or Flux Method?; American Chemical Society; ACS Applied Energy Materials; 4; 9; 9-2021; 9315-9327
dc.identifier.uri
http://hdl.handle.net/11336/164787
dc.description.abstract
Among 600 nm class transition-metal oxynitrides, BaTaO2N with a cubic Pm3¯ m perovskite-type structure is promising for solar water oxidation due to its absorption of visible light up to 660 nm, narrower band gap (Eg = 1.9 eV), appropriate valence band edge position for oxygen evolution, good stability in concentrated alkaline solutions, and nontoxicity. However, high defect density stemmed from long high-temperature ammonolysis limits the separation and transfer efficiency of photogenerated charge carriers in BaTaO2N. Here, a NH3 delivery system is specifically localized just above the synthesis mixture to reduce the synthesis time and defect density of BaTaO2N by a fresh supply of more active nitriding species and minimizing the generation of N2 and H2. Particularly, the effects of synthesis temperature (700-950 °C), synthesis time (1-8 h), and gas composition are systematically investigated to gain insights into the formation of single-phase BaTaO2N by solid-state reaction and flux method. Time-dependent experiments conducted at 950 °C show that single-phase BaTaO2N can be synthesized ≥6 and ≥4 h by solid-state reaction and flux method, respectively, revealing the advantage of the flux method over solid-state reaction in a localized NH3 delivery system. Subsequently, the separation and transfer efficiency and kinetics of photogenerated charge carriers are studied in BaTaO2N samples. Photoelectrochemical studies made it possible to resolve trends during visible-light-induced water oxidation, evidencing the inverse relationship between recombination and charge transfer phenomena. Transient absorption spectroscopy reveals that the dynamics of the photogenerated charge carriers in both types of BaTaO2N samples are different: (i) BaTaO2N synthesized by flux method has a greater number of holes despite the similar number of deeply trapped charge carriers and (ii) solid-state reaction led to the formation of a higher number of free electrons in BaTaO2N. The findings demonstrate the advantage of reducing the transfer distance of active nitriding species to the surface of the synthesis mixture for enhancing the photoelectrochemical water oxidation of BaTaO2N at neutral pH.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AMMONOLYSIS
dc.subject
BATAO2N
dc.subject
CHARGE CARRIER DYNAMICS
dc.subject
FLUX METHOD
dc.subject
PHOTOELECTROCHEMICAL PERFORMANCE
dc.subject
SOLID-STATE REACTION
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Time-Retrenched Synthesis of BaTaO2N by Localizing an NH3 Delivery System for Visible-Light-Driven Photoelectrochemical Water Oxidation at Neutral pH: Solid-State Reaction or Flux Method?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-03T18:09:11Z
dc.identifier.eissn
2574-0962
dc.journal.volume
4
dc.journal.number
9
dc.journal.pagination
9315-9327
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Mora Hernandez, J. Manuel. Consejo Nacional de Ciencia y Tecnología; México
dc.description.fil
Fil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Yamakata, Akira. Toyota Technological Institute; Japón
dc.description.fil
Fil: Yubuta, Kunio. Tohoku University; Japón. Kyushu University; Japón
dc.description.fil
Fil: Heppke, Eva Maria. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Torres Martínez, Leticia M.. Centro de Investigacion En Materiales Avanzados; México. Universidad Autónoma de Nuevo León; México
dc.description.fil
Fil: Teshima, Katsuya. Shinshu University; Japón
dc.description.fil
Fil: Lerch, Martin. Technishe Universitat Berlin; Alemania
dc.journal.title
ACS Applied Energy Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsaem.1c01539
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.1c01539
Archivos asociados