Artículo
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions
Fecha de publicación:
02/2021
Editorial:
Birkhauser Boston Inc
Revista:
Journal Of Fourier Analysis And Applications
ISSN:
1069-5869
e-ISSN:
1531-5851
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension.
Palabras clave:
ARITHMETIC PROGRESSIONS
,
FRACTALS
,
HAUSDORFF DIMENSION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Fraser, Jonathan M.; Shmerkin, Pablo Sebastian; Yavicoli, Alexia; Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 27; 1; 2-2021; 1-14
Compartir
Altmétricas