Mostrar el registro sencillo del ítem

dc.contributor.author
Lescano, Germán Ezequiel  
dc.contributor.author
Torres Jimenez, José  
dc.contributor.author
Costaguta, Rosanna Nieves  
dc.contributor.author
Amandi, Analia Adriana  
dc.contributor.author
Lara Álvarez, Carlos  
dc.date.available
2022-08-08T18:30:01Z  
dc.date.issued
2021-11  
dc.identifier.citation
Lescano, Germán Ezequiel; Torres Jimenez, José; Costaguta, Rosanna Nieves; Amandi, Analia Adriana; Lara Álvarez, Carlos; Detecting conflicts in collaborative learning through the valence change of atomic interactions; Elsevier; Expert Systems with Applications; 183; 11-2021; 1-9  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/164613  
dc.description.abstract
Naturally, every collaboration will bring conflicts that can affect the performance of a team. The earlier a conflict is detected and managed in a collaborative group, the better. Detecting and tracking conflicts in Computer-Supported Collaborative Learning (CSCL) is laborious work. If the teacher does it, the intervention may be out of time. Although written dialogues in groups having a conflict reveal the increment of negative emotions in comparison to non-conflict dialogues, a classifier that only uses statistics of the valence of consecutive messages in a window of the talk shows poor performance. This paper proposes to use features based on the valence change between a message and its response. In this way the algorithm focuses in the kind of interaction. We study different implementations of the bootstrap aggregating technique to detect conflicts. Results obtained show the viability of the proposed approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BOOTSTRAP AGGREGATING  
dc.subject
CONFLICTS  
dc.subject
CSCL  
dc.subject
EMOTIONS  
dc.subject
SENTIMENT ANALYSIS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Detecting conflicts in collaborative learning through the valence change of atomic interactions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-04T15:10:05Z  
dc.journal.volume
183  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Lescano, Germán Ezequiel. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Instituto de Investigación en Informática y Sistemas de Información; Argentina  
dc.description.fil
Fil: Torres Jimenez, José. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México  
dc.description.fil
Fil: Costaguta, Rosanna Nieves. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Instituto de Investigación en Informática y Sistemas de Información; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo de Inteligencia Comportamental Empresarial; Argentina  
dc.description.fil
Fil: Lara Álvarez, Carlos. Centro de Investigación en Matemáticas A.C.; México  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417421007223  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2021.115291