Mostrar el registro sencillo del ítem

dc.contributor.author
Chiappini, Fabricio Alejandro  
dc.contributor.author
Gutierrez, Fabiana Andrea  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2022-08-08T17:40:52Z  
dc.date.issued
2021-10  
dc.identifier.citation
Chiappini, Fabricio Alejandro; Gutierrez, Fabiana Andrea; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Achieving the analytical second-order advantage with non-bilinear second-order data; Elsevier Science; Analytica Chimica Acta; 1181; 10-2021; 1-10  
dc.identifier.issn
0003-2670  
dc.identifier.uri
http://hdl.handle.net/11336/164595  
dc.description.abstract
Multi-way calibration based on second-order data constitutes a revolutionary milestone for analytical applications. However, most classical chemometric models assume that these data fulfil the property of low rank bilinearity, which cannot be accomplished by all instrumental methods. Indeed, various techniques are able to generate non-bilinear data, which are all potentially useful for the development of novel second-order calibration methodologies. However, the achievement of the second-order advantage in these cases may be severely limited, since methods for comprehensive modelling of non-bilinear second-order data remain only partially explored. In this research, the analytical performance of three well-known second-order models, namely non-bilinear rank annihilation (NBRA), unfolded partial least-squares with residual bilinearization (U-PLS-RBL) and multivariate curve resolution - alternating least-squares (MCR-ALS) is systematically assessed through sets of simulated and experimental non-bilinear second-order data, involving one analyte and one interferent. Although it is not possible to establish a single strategy to model any type of non-bilinear second-order data with the studied methods, each approach may lead to successful predictions under certain circumstances. It is shown that the prediction capacity is severely affected by data properties such as the level of instrumental noise, the rank of the response matrices and the signal selectivity pattern of the analyte.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANALYTE SELECTIVITY  
dc.subject
MULTIVARIATE CURVE RESOLUTION ALTERNATING LEAST-SQUARES  
dc.subject
NON-BILINEAR RANK ANNIHILATION  
dc.subject
NON-BILINEAR SECOND-ORDER DATA  
dc.subject
SECOND-ORDER ADVANTAGE  
dc.subject
UNFOLDED PARTIAL LEAST-SQUARES REGRESSION WITH RESIDUAL BILINEARIZATION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Achieving the analytical second-order advantage with non-bilinear second-order data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-08T15:16:27Z  
dc.journal.volume
1181  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chiappini, Fabricio Alejandro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Gutierrez, Fabiana Andrea. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Analytica Chimica Acta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0003267021007376  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2021.338911