Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Soybean in rotation with cereals attenuates nitrous oxide emissions as compared with soybean monoculture in the Pampas region

Piccinetti, Carlos Fabián; Bacigaluppo, Silvina; Di Ciocco, César Agusto; De Tellería, J. M.; Salvagiotti, FernandoIcon
Fecha de publicación: 11/2021
Editorial: Elsevier Science
Revista: Geoderma
ISSN: 0016-7061
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Nitrous oxide (N-N2O) emissions in the agricultural sector represent ca. 25% of total N-N2O emissions on a global scale. In Argentina, information on agricultural emissions is scarce, and thus, N-N2O emissions are estimated by IPCC equations. Most reports in Argentina have estimated N-N2O emissions at crop scale, while few studies estimated emissions at the cropping system scale. Soybean in Argentina is mainly planted as monoculture, though, the inclusion of cereals in crop rotations may modify soil properties associated with N-N2O emissions such as water-filled pore space (%WFPS), soil temperature, or nitrate content. The objectives of this work were to: i) compare N-N2O emissions in crop sequences that include soybean in different proportions; ii) evaluate the impact of these emissions in relation with N inputs (fertilizer + BNF) at the cropping sequence level, and iii) compare these observations with emissions as estimated by the IPCC equation (tier 1). During two years, N-N2O emissions, soil N-NO3-, soil WFPS, and soil temperature were measured biweekly in a long-term experiment under no-tillage in four sequences: i) full-season soybean monoculture (S-S); ii) winter cover crop/soybean (CC/S); iii) double-cropped wheat/soybean — maize (W/S-M), and vi) double-cropped wheat/soybean — winter cover crop/maize (W/S-CC/M). Aboveground biomass, yield (expressed in glucose equivalents), and nitrogen (N) uptake were determined for each crop at harvest. For soybean, additionally to these variables, N derived from biological N fixation (BNF) was determined, as well. N-N2O emissions were scaled to yield and to vegetative biomass. During the two years of this study, cumulated biomass (expressed in glucose equivalents) was significantly lower in S-S and CC/S (29.5 and 36.8 Mg GluEq ha−1, respectively) than in W/S-M and W/S-CC/M (48.6 and 54.6 Mg GluEq ha−1, respectively). In the same period, exported cumulated N with grains was similar among sequences averaging 277 kg N ha−1, while the largest cumulated N input (N fertilizer + BNF) was 392 kg N ha−1 in W/S-CC/M, surpassing the other sequences by 100%. N-N2O flux rates were the lowest in W/S-M (7.8 μg N-N2O m-2h−1) and the highest in CC/S (19.0 μg N-N2O m-2h−1). Therefore, at the cropping sequence level, N-N2O emissions represented on average 0.62% of cumulated N inputs. A multiple regression model indicated that N-N2O emissions were more related to soil %WFPS (0–20 cm) and soil temperature (at 10 cm). IPCC direct emission equation (tier 1) overestimated N-N2O emissions for W/S-M and W/S-CC-M. In absolute terms, sequences including cereals showed similar cumulated emissions to S-S, however, when emission were scaled to unit yield or vegetative biomass, sequences that included cereals in the rotation attenuated N-N2O losses.
Palabras clave: CEREALS , CROP SEQUENCES , GRAIN YIELD AND VEG-SCALED , NITROGEN , NITROUS OXIDE , SOYBEAN
Ver el registro completo
 
Archivos asociados
Tamaño: 2.134Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/164588
DOI: http://dx.doi.org/10.1016/j.geoderma.2021.115192
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Piccinetti, Carlos Fabián; Bacigaluppo, Silvina; Di Ciocco, César Agusto; De Tellería, J. M.; Salvagiotti, Fernando; Soybean in rotation with cereals attenuates nitrous oxide emissions as compared with soybean monoculture in the Pampas region; Elsevier Science; Geoderma; 402; 11-2021; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES