Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Domain classifier-based transfer learning for visual attention prediction

Zhang, Zhiwen; Duan, Feng; Caiafa, César FedericoIcon ; Solé Casals, Jordi
Fecha de publicación: 04/2022
Editorial: Springer
Revista: World Wide Web-internet And Web Information Systems
ISSN: 1386-145X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Benefitting from machine learning techniques based on deep neural networks, data-driven saliency has achieved significant success over the past few decades. However, existing data-hungry models for saliency prediction require large-scale datasets to be trained. Although some studies based on the transfer learning strategy have managed to acquire sufficient information from the limited samples of the target domain, obtaining saliency maps for the transfer process from one image category to another still remains a challenge. To solve this problem, we propose a domain classifier paradigm-based adaptation method for saliency prediction. The method provides sufficient information by classifying the domain from which the data sample originated. Specifically, only a few target domain samples are used in our few-shot transfer learning paradigm, and the prediction results are compared with those obtained through state-of-the-art methods (such as the fine-tuned transfer strategy). To the best of our knowledge, the proposed transfer framework is the first work that conducts saliency prediction while taking the domain adaptation of different image categories into consideration. Comprehensive experiments are conducted on various image category pairs for source and target domains. The experimental results show that our proposed approach achieves a significant performance improvement with respect to conventional transfer learning approaches.
Palabras clave: saliency map , transfer learning , visual attention
Ver el registro completo
 
Archivos asociados
Tamaño: 1.483Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/164548
URL: https://link.springer.com/10.1007/s11280-022-01027-0
DOI: http://dx.doi.org/10.1007/s11280-022-01027-0
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Zhang, Zhiwen; Duan, Feng; Caiafa, César Federico; Solé Casals, Jordi; Domain classifier-based transfer learning for visual attention prediction; Springer; World Wide Web-internet And Web Information Systems; 25; 4-2022; 1685–1701
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES