Artículo
Dualities for subresiduated lattices
Fecha de publicación:
11/2021
Editorial:
Springer
Revista:
Algebra Universalis
ISSN:
0002-5240
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A subresiduated lattice is a pair (A,D), where A is a bounded distributive lattice, D is a bounded sublattice of A and for every a,b ∈ A there is c ∈ D such that for all d ∈ D, d∧a ≤ b if and only if d ≤ c. This c is denoted by a → b. This pair can be regarded as an algebra ⟨A,∧,∨,→,0,1⟩ of type (2,2,2,0,0) where D = {a ∈ A : 1 → a = a}. The class of subresiduated lattices is a variety which properly contains to the variety of Heyting algebras. In this paper we present dual equivalences for the algebraic category of subresiduated lattices. More precisely, we develop a spectral style duality and a bitopological style duality for this algebraic category. Finally we study the connections of these results with a known Priestley style duality for the algebraic category of subresiduated lattices.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Nagy, Agustin Leonel; San Martin, Hernán J.; Dualities for subresiduated lattices; Springer; Algebra Universalis; 82; 4; 11-2021; 1-19
Compartir
Altmétricas