Mostrar el registro sencillo del ítem
dc.contributor.author
Antezana, Jorge Abel
dc.contributor.author
Ghiglioni, Eduardo Mario
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2022-08-03T13:10:57Z
dc.date.issued
2022-03
dc.identifier.citation
Antezana, Jorge Abel; Ghiglioni, Eduardo Mario; Stojanoff, Demetrio; Ergodic theorem in CAT(0) spaces in terms of inductive means; Cambridge University Press; Ergodic Theory And Dynamical Systems; 2022; 3-2022; 1-22
dc.identifier.issn
0143-3857
dc.identifier.uri
http://hdl.handle.net/11336/164005
dc.description.abstract
Let (G, +) be a compact, abelian, and metrizable topological group. In this group we take g ∈ G such that the corresponding automorphism τg is ergodic. The main result of this paper is a new ergodic theorem for functions in L1(G, M), where M is a Hadamard space. The novelty of our result is that we use inductive means to average the elements of the orbit {τgn(h)}n∈ℕ.. The advantage of inductive means is that they can be explicitly computed in many important examples. The proof of the ergodic theorem is done firstly for continuous functions, and then it is extended to L1 functions. The extension is based on a new construction of mollifiers in Hadamard spaces. This construction has the advantage that it only uses the metric structure and the existence of barycenters, and does not require the existence of an underlying vector space. For this reason, it can be used in any Hadamard space, in contrast to those results that need to use the tangent space or some chart to define the mollifier.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BARYCENTER
dc.subject
ERGODIC THEOREM
dc.subject
HADAMARD SPACE
dc.subject
INDUCTIVE MEANS
dc.subject
NON-POSITIVELY CURVED SPACE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Ergodic theorem in CAT(0) spaces in terms of inductive means
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-04T19:57:59Z
dc.journal.volume
2022
dc.journal.pagination
1-22
dc.journal.pais
Reino Unido
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
dc.description.fil
Fil: Ghiglioni, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
dc.journal.title
Ergodic Theory And Dynamical Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0143385722000104/type/journal_article
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/etds.2022.10
Archivos asociados