Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial

Título: Heuristic algorithm for pet images’ segmentation using artificial inteligence techniques
Scarinci, Ignacio EmanuelIcon ; Pérez, Pedro AntonioIcon ; Valente, Mauro AndresIcon
Fecha de publicación: 01/2021
Editorial: Asociación Física Argentina
Revista: Anales AFA
ISSN: 0327-358X
e-ISSN: 1850-1168
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

 
La cantidad de procedimientos de medicina nuclear se ha incrementado notablemente en los últimos años, convirtiendo a éstos en una herramienta cotidiana que alcanza a amplios sectores de la población. En relación al uso terapéutico de la medicina nuclear, la cantidad de nuevas técnicas y el uso de mayor variedad de radioisótopos demandan una cuantificación dosimétrica precisa y de carácter paciente-específico, a los fines de evaluar daños letales al tumor manteniendo niveles aceptables de dosis en tejidos sanos. En el caso particular de los tratamientos teranósticos que permiten la realización conjunta de tratamiento-diagnóstico, se presenta la posibilidad de realizar dosimetría interna guiada por imágenes. En este caso, resulta crítica la segmentación correcta de las imágenes para la identificación de diferentes tejidos y órganos. Por otra parte, las herramientas de la ciencia de datos y la inteligencia artificial se han difundido en varios campos, en particular el procesamiento digital de imágenes. La posibilidad de utilizar modelos de aprendizaje automático para el procesamiento de imágenes digitales surge como una oportunidad promisoria para complementar el análisis clínico por parte de expertos. En este trabajo se presenta un algoritmo heurístico de segmentación no supervisada utilizando conjuntamente técnicas de clustering y aprendizaje automático, basado en la utilización de dos algoritmos: K-Means y HDBSCAN. Los resultados obtenidos muestran la capacidad de segmentado automático de los algoritmos de clustering resultando éstos una herramienta útil para facilitar y acortar los tiempos de segmentación.
 
The overall quantity of nuclear medicine procedures has increased remarkably in recent years, making them a daily tool capable of reaching wide sectors of the population. Regarding the nuclear medicine therapeutic applications, it is worth noting that there is an increasing demand of novel techniques and greater variety of radioisotopes requiring accurate patient-specific dosimetry aimed at evaluating lethal damage to the tumor while maintaining acceptable dose levels in healthy tissues. Image-guided internal dosimetry appears as particularly suitable for theranostics procedures, which allow the joint implementation of diagnose and treatment. In this case, the correct segmentation of the images is critical for the identification of different tissues and organs. On the other hand, modern tools based on data science and artificial intelligence have spread in several fields, particularly in the digital image processing. The use of machine learning models for digital image processing appears as a promising opportunity to complement clinical analysis by experts. This paper reports about an unsupervised segmentation heuristic algorithm using clustering and machine learning techniques together, based on the use of two algorithms: K-Means and HDBSCAN. The results obtained highlight the capacity of automatic segmentation by means of clustering algorithms, becoming a useful tool to assist clinician experts and shorten the segmentation times.
 
Palabras clave: Medicina nuclear , Dosimetría , Inteligencia artificial , Teranóstica
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.807Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/163932
DOI: https://doi.org/10.31527/analesafa.2020.31.4.165
URL: https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/2263
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Scarinci, Ignacio Emanuel; Pérez, Pedro Antonio; Valente, Mauro Andres; Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial; Asociación Física Argentina; Anales AFA; 31; 4; 1-2021; 165-171
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES