Mostrar el registro sencillo del ítem

dc.contributor.author
Turjanski, Pablo Guillermo  
dc.contributor.author
Soba, Alejandro  
dc.contributor.author
Suarez, Cecilia  
dc.contributor.author
Colombo, Lucas Luis  
dc.contributor.author
González, Graciela  
dc.contributor.author
Molina, Fernando Víctor  
dc.contributor.author
Marshall, Guillermo Ricardo  
dc.date.available
2022-08-02T17:04:50Z  
dc.date.issued
2007-12  
dc.identifier.citation
Turjanski, Pablo Guillermo; Soba, Alejandro; Suarez, Cecilia; Colombo, Lucas Luis; González, Graciela; et al.; Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 40; 12-2007; 3458-3474  
dc.identifier.issn
2591-3522  
dc.identifier.uri
http://hdl.handle.net/11336/163921  
dc.description.abstract
Electrochemotherapy (EChT) of tumors consists in the passage of a direct electric current through electrodes inserted locally in the tissue, mainly causing its necrosis. This kind of treatment has been specially applied in China for the last ten years in more than 10 000 patients with good clinical results. The extreme pH changes induced by EChT has been proposed as the main tumor destruction mechanism. In this paper, we describe two different numerical models of EChT (non-buffered and buffered models) that analyze electrolyte diffusive and migratory transport near the anode in a diluted solution, with or without the presence of buffer in the medium. These models use the quasi-one-dimensional Nernst-Planck equations under the hypothesis of electroneutrality and galvanostatic conditions. The equations are solved, for each time step, with finite differences in a fixed domain with a variable mesh that allows greater accuracy near the anodic boundary region. We compare pH distribution predictions derived from the non-buffered and the buffered models with experimental results obtained from collagen I gels and subcutaneous tumors developed in mice, respectively. Simulations predict that, after the EChT treatment, an initial condition with an homogeneous and almost neutral pH becomes extremely acid at the anode, rapidly recovering its neutral value as we move away from it. The strong acidification expands through the anodic area as the EChT dosage increases. These predictions are in good agreement with experimental results. Other qualitative and quantitative comparisons reveal that the non-buffered model has a better correlation with reality than the buffered one. This approach and results open a promising area of research that may help in the elucidation of the real consequences of an EChT applied to tumor tissues. We believe this could have significant implications in the future design of optimal operative conditions and dose planning of this kind of therapy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Asociación Argentina de Mecánica Computacional  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tumors  
dc.subject
Electrochemical treatment  
dc.subject
Mathematical modelling  
dc.subject
Numerical simulation  
dc.subject.classification
Oncología  
dc.subject.classification
Medicina Clínica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Anodic ph distribution analysis during electrochemical treatment of tumors: numerical simulations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-15T15:25:02Z  
dc.journal.volume
XXVI  
dc.journal.number
40  
dc.journal.pagination
3458-3474  
dc.journal.pais
Argentina  
dc.journal.ciudad
Córdoba  
dc.description.fil
Fil: Turjanski, Pablo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina  
dc.description.fil
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina  
dc.description.fil
Fil: Suarez, Cecilia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina  
dc.description.fil
Fil: Colombo, Lucas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina  
dc.description.fil
Fil: González, Graciela. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina  
dc.description.fil
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Marshall, Guillermo Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Mecánica Computacional  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://venus.santafe-conicet.gov.ar/ojs/index.php/mc/article/view/1355