Mostrar el registro sencillo del ítem

dc.contributor.author
Alviso, Dario  
dc.contributor.author
Zárate Evers, Cristhian Manuel  
dc.contributor.author
Duriez, Thomas Pierre Cornil  
dc.date.available
2022-08-02T10:55:53Z  
dc.date.issued
2021-01  
dc.identifier.citation
Alviso, Dario; Zárate Evers, Cristhian Manuel; Duriez, Thomas Pierre Cornil; Modeling of vegetable oils cloud point, pour point, cetane number and iodine number from their composition using genetic programming; Elsevier; Fuel; 284; 1-2021; 1-13  
dc.identifier.issn
0016-2361  
dc.identifier.uri
http://hdl.handle.net/11336/163804  
dc.description.abstract
Vegetable oils (VOs) are composed of 90–98% of triglycerides, i.e. esters composed of three fatty acids and glycerol, and small amounts of mono- and di-glycerides. Due to their physico-chemical properties, VOs have been considered for uses especially in large ships, in stationary engines and low and medium speed diesel engines, in pure form or in blends with fuel oil, diesel, biodiesel and alcohols. There are about 350 VOs with potential as fuel sources, and for most of them, physico-chemical properties values have not yet been measured. In this context, regression models using only VOs fatty acid composition are very useful. In the present paper, regression analysis of VOs cloud point (CP), pour point (PP), cetane number (CN) and iodine number (IN) as a function of saturated and unsaturated fatty acids is conducted. The study is done by using 4 experimental databases including 88 different data of VOs. Concerning the regression technique, genetic programming (GP) has been chosen. The cost function of GP is defined to minimize the Mean Absolute Error (MAE) between experimental and predicted values of each property. The resulting GP models consisting of terms including saturated and unsaturated fatty acids reproduce correctly the dependencies of all four properties on those acids. And they are validated by showing that their results are in good agreement to the experimental databases. In fact, MAE values of the proposed models with respect to the databases for CP, PP, CN and IN are lower than 4.51 °C, 4.54 °C, 3.64 and 8.01, respectively.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CETANE NUMBER  
dc.subject
CLOUD POINT  
dc.subject
FATTY ACID  
dc.subject
IODINE NUMBER  
dc.subject
POUR POINT  
dc.subject
VEGETABLE OILS  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modeling of vegetable oils cloud point, pour point, cetane number and iodine number from their composition using genetic programming  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-01T13:39:55Z  
dc.journal.volume
284  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Alviso, Dario. Universidad Nacional de Asunción; Paraguay. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Zárate Evers, Cristhian Manuel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Duriez, Thomas Pierre Cornil. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Fuel  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0016236120320226  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.fuel.2020.119026