Mostrar el registro sencillo del ítem

dc.contributor.author
Lozano Negro, Fabricio Simon  
dc.contributor.author
Ferreyra Ortega, Marcos A.  
dc.contributor.author
Bendersky, Denise  
dc.contributor.author
Fernández, Lucas Jonatan  
dc.contributor.author
Pastawski, Horacio Miguel  
dc.date.available
2022-08-01T13:19:57Z  
dc.date.issued
2022-03  
dc.identifier.citation
Lozano Negro, Fabricio Simon; Ferreyra Ortega, Marcos A.; Bendersky, Denise; Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Simulating a catalyst induced quantum dynamical phase transition of a Heyrovsky reaction with different models for the environment; IOP Publishing; Journal of Physics: Condensed Matter; 34; 21; 3-2022; 1-20  
dc.identifier.issn
0953-8984  
dc.identifier.uri
http://hdl.handle.net/11336/163640  
dc.description.abstract
Through an appropriate election of the molecular orbital basis, we show analytically that the molecular dissociation occurring in a Heyrovsky reaction can be interpreted as a quantum dynamical phase transition, i.e., an analytical discontinuity in the molecular energy spectrum induced by the catalyst. The metallic substrate plays the role of an environment that produces an energy uncertainty on the adatom. This broadening induces a critical behavior not possible in a quantum closed system. We use suitable approximations on symmetry, together with both Lanczos and canonical transformations, to give analytical estimates for the critical parameters of molecular dissociation. This occurs when the bonding to the surface is 2 times the molecular bonding. This value is slightly weakened for less symmetric situations. However simple, this conclusion involves a high order perturbative solution of the molecule-catalyst system. This model is further simplified to discuss how an environment-induced critical phenomenon can be evaluated through an idealized perturbative tunneling microscopy set-up. In this case, the energy uncertainties in one or both atoms are either Lorentzian or Gaussian. The former results from the Fermi golden rule, i.e., a Markovian approximation. The Gaussian uncertainty, associated with non-Markovian decoherent processes, requires the introduction of a particular model of a spin bath. The partially coherent tunneling current is obtained from the generalized Landauer-Büttiker equations. The resonances observed in these transport parameters reflect, in many cases, the critical properties of the resonances in the molecular spectrum.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
D'AMATO-PASTAWSKI MODEL  
dc.subject
HETEROGENEUS CATALYSIS  
dc.subject
HEYROVSKY REACTION  
dc.subject
NON-MARKOVIAN ENVIRONMENT  
dc.subject
QUANTUM DYNAMICAL PHASE TRANSITION  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simulating a catalyst induced quantum dynamical phase transition of a Heyrovsky reaction with different models for the environment  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-04T19:55:06Z  
dc.journal.volume
34  
dc.journal.number
21  
dc.journal.pagination
1-20  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Lozano Negro, Fabricio Simon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Ferreyra Ortega, Marcos A.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Bendersky, Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Pastawski, Horacio Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Journal of Physics: Condensed Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-648X/ac57d6/meta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-648X/ac57d6