Mostrar el registro sencillo del ítem

dc.contributor.author
Hurtado, Santiago Ignacio  
dc.contributor.author
Zaninelli, Pablo Gabriel  
dc.contributor.author
Agosta, Eduardo A.  
dc.contributor.author
Ricetti, Lorenzo  
dc.date.available
2022-07-28T19:23:57Z  
dc.date.issued
2021-06  
dc.identifier.citation
Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Ricetti, Lorenzo; Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina; Elsevier; Atmospheric Research; 254; 6-2021; 1-34  
dc.identifier.issn
0169-8095  
dc.identifier.uri
http://hdl.handle.net/11336/163465  
dc.description.abstract
Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina (STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop serious climatological researches. However, precipitation records in this region are frequently inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing the best method to complete precipitation data series relies on rain gauge network density and on the complexity of orography, among other factors. Most comparative-method studies in the literature are focused on dense station networks while, contrastingly, the STAr's station network density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the performance of several interpolation methods in STAr. In this sense, the performance of a large number of interpolation methods was evaluated for dry and wet seasons, interpolating raw monthly data and their anomalies applied to different time-series subsets. In general, most methods performances improve when applied to anomalies in the seasonal time-series subset. Multiple Linear Regression (MLR) stands out as the method with the best performance for infilling precipitation records for most of the regions regardless of orography or season. Despite the bibliography invokes that kriging interpolation methods are the best ones, in this work the performance of kriging methods was similar to the one of the Inverse Distance Weighted method (IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU precipitation dataset).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
INTERPOLATION METHODS  
dc.subject
MISSING DATA  
dc.subject
MONTHLY PRECIPITATION  
dc.subject
SCARCE DATA  
dc.subject
TIME SERIES  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-06T15:00:16Z  
dc.journal.volume
254  
dc.journal.pagination
1-34  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina  
dc.description.fil
Fil: Agosta, Eduardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.journal.title
Atmospheric Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S016980952100034X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.atmosres.2021.105482