Artículo
A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids
Barulich, Nestor Darío
; Deutsch, Aharon; Inbar, Moshe; Godoy, Luis Augusto
; Dardati, Patricia Mónica
Fecha de publicación:
07/2021
Editorial:
SAGE Publications
Revista:
Mathematics And Mechanics Of Solide
ISSN:
1081-2865
e-ISSN:
1741-3028
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IDIT)
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Citación
Barulich, Nestor Darío; Deutsch, Aharon; Inbar, Moshe; Godoy, Luis Augusto; Dardati, Patricia Mónica; A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids; SAGE Publications; Mathematics And Mechanics Of Solide; 27; 3; 7-2021; 1-23
Compartir
Altmétricas