Mostrar el registro sencillo del ítem
dc.contributor.author
Vigo, Daniel Eduardo
dc.contributor.author
Dominguez, Javier
dc.contributor.author
Guinjoan, Salvador Martín
dc.contributor.author
Scaramal, Mariano
dc.contributor.author
Ruffa, Eduardo
dc.contributor.author
Solernó, Juan
dc.contributor.author
Nicola Siri, Leonardo Cristian
dc.contributor.author
Cardinali, Daniel Pedro
dc.date.available
2017-05-11T18:56:10Z
dc.date.issued
2010-04
dc.identifier.citation
Vigo, Daniel Eduardo; Dominguez, Javier; Guinjoan, Salvador Martín; Scaramal, Mariano; Ruffa, Eduardo; et al.; Nonlinear analysis of heart rate variability within independent frequency components during the sleep–wake cycle; Elsevier Science; Autonomic Neuroscience.; 154; 1-2; 4-2010; 84-88
dc.identifier.issn
1566-0702
dc.identifier.uri
http://hdl.handle.net/11336/16325
dc.description.abstract
Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Autonomic Nervous System
dc.subject
Heart Rate Variability
dc.subject
Nonlinear
dc.subject
Complexity
dc.subject
Wavelet Transform
dc.subject
Sleep Stages
dc.subject.classification
Neurociencias
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Nonlinear analysis of heart rate variability within independent frequency components during the sleep–wake cycle
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-10T20:33:43Z
dc.journal.volume
154
dc.journal.number
1-2
dc.journal.pagination
84-88
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Vigo, Daniel Eduardo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Dominguez, Javier. Unidad Asistencial Doctor César Milstein; Argentina. Gobierno de la Ciudad de Buenos Aires. Instituto Nacional de Servicios Sociales para Jubilados y Pensionados; Argentina
dc.description.fil
Fil: Guinjoan, Salvador Martín. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Scaramal, Mariano. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina
dc.description.fil
Fil: Ruffa, Eduardo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina
dc.description.fil
Fil: Solernó, Juan. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina
dc.description.fil
Fil: Nicola Siri, Leonardo Cristian. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cardinali, Daniel Pedro. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Autonomic Neuroscience.
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1566070209005384
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.autneu.2009.10.007
Archivos asociados