Mostrar el registro sencillo del ítem

dc.contributor.author
Vigo, Daniel Eduardo  
dc.contributor.author
Dominguez, Javier  
dc.contributor.author
Guinjoan, Salvador Martín  
dc.contributor.author
Scaramal, Mariano  
dc.contributor.author
Ruffa, Eduardo  
dc.contributor.author
Solernó, Juan  
dc.contributor.author
Nicola Siri, Leonardo Cristian  
dc.contributor.author
Cardinali, Daniel Pedro  
dc.date.available
2017-05-11T18:56:10Z  
dc.date.issued
2010-04  
dc.identifier.citation
Vigo, Daniel Eduardo; Dominguez, Javier; Guinjoan, Salvador Martín; Scaramal, Mariano; Ruffa, Eduardo; et al.; Nonlinear analysis of heart rate variability within independent frequency components during the sleep–wake cycle; Elsevier Science; Autonomic Neuroscience.; 154; 1-2; 4-2010; 84-88  
dc.identifier.issn
1566-0702  
dc.identifier.uri
http://hdl.handle.net/11336/16325  
dc.description.abstract
Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Autonomic Nervous System  
dc.subject
Heart Rate Variability  
dc.subject
Nonlinear  
dc.subject
Complexity  
dc.subject
Wavelet Transform  
dc.subject
Sleep Stages  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Nonlinear analysis of heart rate variability within independent frequency components during the sleep–wake cycle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-10T20:33:43Z  
dc.journal.volume
154  
dc.journal.number
1-2  
dc.journal.pagination
84-88  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Vigo, Daniel Eduardo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Dominguez, Javier. Unidad Asistencial Doctor César Milstein; Argentina. Gobierno de la Ciudad de Buenos Aires. Instituto Nacional de Servicios Sociales para Jubilados y Pensionados; Argentina  
dc.description.fil
Fil: Guinjoan, Salvador Martín. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Scaramal, Mariano. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina  
dc.description.fil
Fil: Ruffa, Eduardo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina  
dc.description.fil
Fil: Solernó, Juan. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina  
dc.description.fil
Fil: Nicola Siri, Leonardo Cristian. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cardinali, Daniel Pedro. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Autonomic Neuroscience.  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1566070209005384  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.autneu.2009.10.007