Mostrar el registro sencillo del ítem

dc.contributor.author
Chiappero, Julieta  
dc.contributor.author
Cappellari, Lorena del Rosario  
dc.contributor.author
Palermo, Tamara Belen  
dc.contributor.author
Giordano, Walter Fabian  
dc.contributor.author
Khan, Naeem  
dc.contributor.author
Banchio, Erika  
dc.date.available
2022-07-26T17:30:15Z  
dc.date.issued
2021-09  
dc.identifier.citation
Chiappero, Julieta; Cappellari, Lorena del Rosario; Palermo, Tamara Belen; Giordano, Walter Fabian; Khan, Naeem; et al.; Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress; Elsevier Science; Industrial Crops and Products; 167; 9-2021; 1-14  
dc.identifier.issn
0926-6690  
dc.identifier.uri
http://hdl.handle.net/11336/163187  
dc.description.abstract
Environmental stress represents a major limitation for increasing crop productivity and the use of natural resources. Most plants are exposed to various types of stress to different degrees and have an inherent ability to adapt to seasonal variations, but when they are subjected to drought and salinity stress, a series of morphological, physiological, biochemical and molecular changes occur. Moreover, both drought and salinity result in osmotic stress, which inhibits growth and causes disturbances at metabolic level. An effect of osmotic stress is the production of high levels of reactive oxygen species (ROS). At low concentrations, ROS are essential participants in cell signaling, but an excess generation of ROS results in toxicity, damaging macromolecules leading to cell death. To avoid the deleterious effects of ROS and adjust this imbalance, plants have evolved antioxidant systems that can be classified as enzymatic and non-enzymatic, and together, these preserve homeostasis in all cell compartments. In addition, oxidative stress can be measured indirectly following the formation of oxidative by-products of lipids, proteins, or nucleic acids, with malondialdehyde (MDA) being one of the most widely used markers. It has been observed that the negative effects on plant development caused by water stress can be mitigated by the use of PGPR (Plant Growth Promoting Rhizobacteria) microorganisms, which is an alternative technology for improving the capacity of tolerance to abiotic stress in plants. In the present review, by considering enzymatic and non-enzymatic responses, we elaborate on the role of PGPR in helping medicinal and aromatic plants to cope with osmotic stress through antioxidant defenses. This review paper also emphasizes a future research requirement involving investigating the combined utilization of osmotic stress and PGPR in order to enhance the content of secondary metabolites. In addition, this present review examines the antioxidant responses in MAPs subjected to osmotic stress and inoculated with PGPR, which have not been extensively reviewed before.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ENZYMATIC ANTIOXIDANTS  
dc.subject
ESSENTIAL OIL  
dc.subject
NON-ENZYMATIC ANTIOXIDANTS  
dc.subject
OSMOTIC STRESS  
dc.subject
PGPR  
dc.subject
SECONDARY METABOLITES  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-26T17:35:53Z  
dc.journal.volume
167  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chiappero, Julieta. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina  
dc.description.fil
Fil: Cappellari, Lorena del Rosario. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina  
dc.description.fil
Fil: Palermo, Tamara Belen. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina  
dc.description.fil
Fil: Giordano, Walter Fabian. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina  
dc.description.fil
Fil: Khan, Naeem. University of Florida; Estados Unidos  
dc.description.fil
Fil: Banchio, Erika. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina  
dc.journal.title
Industrial Crops and Products  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0926669021003058  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.indcrop.2021.113541