Mostrar el registro sencillo del ítem

dc.contributor.author
Gualdron Duarte, Jose Luis  
dc.contributor.author
Cantet, Rodolfo Juan Carlos  
dc.contributor.author
Bates, Ronald O.  
dc.contributor.author
Ernst, Catherine W.  
dc.contributor.author
Raney, Nancy E.  
dc.contributor.author
Steibel, Juan P.  
dc.date.available
2017-05-11T18:31:35Z  
dc.date.issued
2014-07  
dc.identifier.citation
Gualdron Duarte, Jose Luis; Cantet, Rodolfo Juan Carlos; Bates, Ronald O.; Ernst, Catherine W.; Raney, Nancy E.; et al.; Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations; Biomed Central; Bmc Bioinformatics; 15; 7-2014; 246-256  
dc.identifier.issn
1471-2105  
dc.identifier.uri
http://hdl.handle.net/11336/16317  
dc.description.abstract
Background: Currently, association studies are analysed using statistical mixed models, with marker effects estimated by a linear transformation of genomic breeding values. The variances of marker effects are needed when performing the tests of association. However, approaches used to estimate the parameters rely on a prior variance or on a constant estimate of the additive variance. Alternatively, we propose a standardized test of association using the variance of each marker effect, which generally differ among each other. Random breeding values from a mixed model including fixed effects and a genomic covariance matrix are linearly transformed to estimate the marker effects. Results: The standardized test was neither conservative nor liberal with respect to type I error rate (false-positives), compared to a similar test using Predictor Error Variance, a method that was too conservative. Furthermore, genomic predictions are solved efficiently by the procedure, and the p-values are virtually identical to those calculated from tests for one marker effect at a time. Moreover, the standardized test reduces computing time and memory requirements. The following steps are used to locate genome segments displaying strong association. The marker with the highest − log(p-value) in each chromosome is selected, and the segment is expanded one Mb upstream and one Mb downstream of the marker. A genomic matrix is calculated using the information from those markers only, which is used as the variance-covariance of the segment effects in a model that also includes fixed effects and random genomic breeding values. The likelihood ratio is then calculated to test for the effect in every chromosome against a reduced model with fixed effects and genomic breeding values. In a case study with pigs, a significant segment from chromosome 6 explained 11% of total genetic variance. Conclusions: The standardized test of marker effects using their own variance helps in detecting specific genomic regions involved in the additive variance, and in reducing false positives. Moreover, genome scanning of candidate segments can be used in meta-analyses of genome-wide association studies, as it enables the detection of specific genome regions that affect an economically relevant trait when using multiple populations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Biomed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Genome Wide Association  
dc.subject
Marker Variance  
dc.subject
Pig Genotype  
dc.subject.classification
Otras Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-25T13:28:14Z  
dc.journal.volume
15  
dc.journal.pagination
246-256  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bates, Ronald O.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Ernst, Catherine W.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Raney, Nancy E.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Steibel, Juan P.. Michigan State University; Estados Unidos  
dc.journal.title
Bmc Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/1471-2105-15-246  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-246  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112210/