Mostrar el registro sencillo del ítem

dc.contributor.author
Meis, Melanie  
dc.contributor.author
Llano, Maria Paula  
dc.contributor.author
Rodríguez, Daniela  
dc.date.available
2022-07-20T17:58:20Z  
dc.date.issued
2022-05  
dc.identifier.citation
Meis, Melanie; Llano, Maria Paula; Rodríguez, Daniela; A statistical tool for a hydrometeorological forecast in the lower La Plata Basin; Taylor & Francis; International Journal of River Basin Management; 2022; 5-2022; 1-39  
dc.identifier.issn
1571-5124  
dc.identifier.uri
http://hdl.handle.net/11336/162685  
dc.description.abstract
Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches to the forecast problem such as SARIMA models usually predict average values correctly but fail to anticipate extreme events. As an approach to this problem, we used copula methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We used this to build a six-months forecast for streamflow 95% percentile using observed index values. We added this forecast as an exogenous variable in a SARIMAX model to predict discharge. Given that NIÑO events are usually correlated with extreme discharge events, we expected this model to improve the SARIMA model in predicting extreme events. When comparing both models, we effectively found that SARIMAX model is better than a SARIMA model both for 6- and 12-month discharge forecasts in periods when an El Niño event occurs, while it retains the same performance level when evaluated on all the span of the time series. This model emerges as a lightweight and easily implementable option for decision makers to anticipate extreme events and reduce the negative impacts that they generate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ENSO  
dc.subject
DISCHARGE  
dc.subject
EXTREME EVENTS  
dc.subject
COPULA METHODS  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-20T15:16:20Z  
dc.identifier.eissn
1814-2060  
dc.journal.volume
2022  
dc.journal.pagination
1-39  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina  
dc.description.fil
Fil: Llano, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina  
dc.description.fil
Fil: Rodríguez, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.journal.title
International Journal of River Basin Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/15715124.2022.2079657  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/15715124.2022.2079657