Mostrar el registro sencillo del ítem

dc.contributor.author
Navarro, Ana  
dc.contributor.author
Boveris, Alberto Antonio  
dc.date.available
2017-05-10T21:37:16Z  
dc.date.issued
2010-09  
dc.identifier.citation
Navarro, Ana; Boveris, Alberto Antonio; Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease; Frontiers; Frontiers in Aging Neuroscience; 2; 34; 9-2010; 1-11  
dc.identifier.issn
1663-4365  
dc.identifier.uri
http://hdl.handle.net/11336/16258  
dc.description.abstract
Brain senescence and neurodegeneration occur with a mitochondrial dysfunction characterized by impaired electron transfer and by oxidative damage. Brain mitochondria of old animals show decreased rates of electron transfer in complexes I and IV, decreased membrane potential, increased content of the oxidation products of phospholipids and proteins and increased size and fragility. This impairment, with complex I inactivation and oxidative damage, is named “complex I syndrome” and is recognized as characteristic of mammalian brain aging and of neurodegenerative diseases. Mitochondrial dysfunction is more marked in brain areas as rat hippocampus and frontal cortex, in human cortex in Parkinson's disease and dementia with Lewy bodies, and in substantia nigra in Parkinson's disease. The molecular mechanisms involved in complex I inactivation include the synergistic inactivations produced by ONOO− mediated reactions, by reactions with free radical intermediates of lipid peroxidation and by amine–aldehyde adduction reactions. The accumulation of oxidation products prompts the idea of antioxidant therapies. High doses of vitamin E produce a significant protection of complex I activity and mitochondrial function in rats and mice, and with improvement of neurological functions and increased median life span in mice. Mitochondria-targeted antioxidants, as the Skulachev cations covalently attached to vitamin E, ubiquinone and PBN and the SS tetrapeptides, are negatively charged and accumulate in mitochondria where they exert their antioxidant effects. Activation of the cellular mechanisms that regulate mitochondrial biogenesis is another potential therapeutic strategy, since the process generates organelles devoid of oxidation products and with full enzymatic activity and capacity for ATP production.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Complex I Syndrome  
dc.subject
Vitamin E  
dc.subject
Antioxidant Therapy  
dc.subject
Mitochondria-Targeted Antioxidants  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-10T19:59:32Z  
dc.journal.volume
2  
dc.journal.number
34  
dc.journal.pagination
1-11  
dc.journal.pais
Suiza  
dc.journal.ciudad
Laussane  
dc.description.fil
Fil: Navarro, Ana. Universidad de Cádiz; España  
dc.description.fil
Fil: Boveris, Alberto Antonio. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Frontiers in Aging Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fnagi.2010.00034/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnagi.2010.00034  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947925/