Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An algorithm for computing the generalized interaction index for k-maxitive fuzzy measures

Murillo, JavierIcon ; Guillaume, Serge; Sari, Tewfik; Bulacio, Pilar Estela
Fecha de publicación: 04/2020
Editorial: IOS Press
Revista: Journal Of Intelligent And Fuzzy Systems
ISSN: 1064-1246
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Fuzzy measures are used for modeling interactions between a set of elements. Simplified fuzzy measures, as k -maxitive measures, were proposed in the literature for complexity and semantic considerations. In order to analyze the importance of a coalition in the fuzzy measure, the use of indices is required. This work focuses on the generalized interaction index, gindex . Its computation requires many resources in both time and space. Following the efforts to reduce the complexity of fuzzy measure identification, this work presents two algorithms to compute the gindex for k -maxitive measures. The structure of k -maxitive measures makes possible to compute the gindex considering the coalitions at level k and, for each of them, the number of coalitions sharing the same coefficient (called inheritors). The first algorithm deals with the space complexity and the second one also optimizes the runtime by not generating, but only counting, the number of inheritors. While counting the number of descendants is easy, this is not the case for the number of inheritors due to all the inheritors of previous considered coalitions have to be taken into account. The two proposed algorithms are tested with synthetic k -maxitive measures showing that the second algorithm is around 4 times faster than the first one.
Palabras clave: FUZZY MEASURES , SHAPLEY INDEX , INTERACTION INDEX , K-MAXITIVE MEASURES
Ver el registro completo
 
Archivos asociados
Tamaño: 206.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/162551
URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-1904
DOI: http://dx.doi.org/10.3233/JIFS-190403
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Murillo, Javier; Guillaume, Serge; Sari, Tewfik; Bulacio, Pilar Estela; An algorithm for computing the generalized interaction index for k-maxitive fuzzy measures; IOS Press; Journal Of Intelligent And Fuzzy Systems; 38; 4; 4-2020; 4127-4137
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES