Mostrar el registro sencillo del ítem

dc.contributor.author
Porras, Mauiricio Ariel  
dc.contributor.author
Adrover, María Esperanza  
dc.contributor.author
Pedernera, Marisa Noemi  
dc.contributor.author
Bucala, Veronica  
dc.contributor.author
Gallo, Loreana Carolina  
dc.date.available
2022-07-18T14:41:14Z  
dc.date.issued
2022-07-15  
dc.identifier.citation
Porras, Mauiricio Ariel; Adrover, María Esperanza; Pedernera, Marisa Noemi; Bucala, Veronica; Gallo, Loreana Carolina; Novel techniques for drug loading quantification in mesoporous SBA-15 using chemometric-assisted UV and FT-IR data; Elsevier Science; Journal of Pharmaceutical and Biomedical Analysis; 216; 15-7-2022; 1-7  
dc.identifier.issn
0731-7085  
dc.identifier.uri
http://hdl.handle.net/11336/162333  
dc.description.abstract
Albendazole is a crystalline drug that is poorly soluble in water, thus the dissolution rate in gastrointestinal fluids is limited. Mesoporous materials loaded with poorly water-soluble drugs become an interesting strategy to increase their solubility/dissolution rate as the drug state changes from crystalline to amorphous. In order to determine the drug loading content into mesoporous materials analytical methods such as elemental analysis, UV and HPLC are commonly used. However, elemental analysis and HPLC are destructive and relatively expensive. In addition, UV is time consuming. Moreover, UV and HPLC require the drug release from the mesoporous material before the quantification step. Therefore, the aim of this work was to develop quantifications techniques based on chemometric models combined with UV and FT-IR spectra without needing the drug release from the mesoporous material. Partial least squares regression (PLSR) was used as chemometric regression method. Albendazole content in the SBA-15 powders was first quantified by elemental analysis as reference measurement for multivariate calibration. The excellent drug loading predictions prove that robust calibration models can be obtained from both techniques (i.e., 0.999 and 0.998 adjusted correlation coefficient for UV and FT-IR, respectively). Additionally, the adjusted correlation coefficients determined from the validation models for UV and FT-IR are 0.963 and 0.930, respectively. It is important to highlight that the prediction adjustment of the FT-IR model (root-mean-square error of prediction=2.196%) presented lower error than the UV model (root-mean-square error of prediction=3.553%). Therefore, this development contributes to improve the overall time and cost of drug loading determination into mesoporous materials.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALBENDAZOLE  
dc.subject
CHEMOMETRIC MODELS  
dc.subject
FT-IR SPECTROSCOPY  
dc.subject
SBA-15  
dc.subject
UV SPECTROSCOPY  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Novel techniques for drug loading quantification in mesoporous SBA-15 using chemometric-assisted UV and FT-IR data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-04T19:16:10Z  
dc.journal.volume
216  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Porras, Mauiricio Ariel. Provincia de Buenos Aires. Dirección General de Cultura y Educación. Universidad Provincial del Sudoeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Adrover, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Pedernera, Marisa Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bucala, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Gallo, Loreana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Journal of Pharmaceutical and Biomedical Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpba.2022.114830