Mostrar el registro sencillo del ítem

dc.contributor.author
Cravero, Fiorella  
dc.contributor.author
Schustik, Santiago  
dc.contributor.author
Martinez Amezaga, Nancy María Jimena  
dc.contributor.author
Diaz, Monica Fatima  
dc.contributor.author
Ponzoni, Ignacio  
dc.date.available
2022-07-14T13:27:20Z  
dc.date.issued
2022-01  
dc.identifier.citation
Cravero, Fiorella; Schustik, Santiago; Martinez Amezaga, Nancy María Jimena; Diaz, Monica Fatima; Ponzoni, Ignacio; How can polydispersity information be integrated in the QSPR modeling of mechanical properties?; Taylor & Francis; Science and Technology of Advanced Materials: Methods; 2; 1; 1-2022; 1-14  
dc.identifier.issn
2766-0400  
dc.identifier.uri
http://hdl.handle.net/11336/162113  
dc.description.abstract
Polymer informatics is an emerging discipline that has benefited from the strong development that data science has experienced over the last decade. In particular, machine learning methods are useful to infer QSPR (Quantitative Structure Property Relationships) models that allow predicting mechanical properties related to the industrial profile of polymeric materials based on their structural repeating units (SRUs). Nonetheless, the chemical structure of the SRU is only one of the many factors that affect the industrial usefulness of a polymer. Other equally relevant factors are polymer molecular weight, molecular weight distribution, and production method, which are related to the inherent polydispersity of this kind of material. For this reason, the computational characterization used for the building of QSPR models for predicting mechanical properties should consider these main factors. The aim of this paper is to highlight recent advances in data science to address the inclusion of polydispersity information of polymeric materials in QSPR modeling. We present two dimensions of discussion: data representation and algorithmic issues. In the first one, we examine how different strategies can be applied to include polydispersity data in the molecular descriptors that characterize the polymers. We explain two data representation approaches designed by our group, named as trivalued and multivalued molecular descriptors. In the second dimension, we discuss algorithms proposed to deal with these new molecular descriptor representations during the construction of the QSPR models. Thus, we present here a comprehensible and integral methodology to address the challenges that polydispersity generates in the QSPR modeling of mechanical properties of polymers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
POLYMER INFORMATICS  
dc.subject
MACHINE LEARNING  
dc.subject
QSAR  
dc.subject
POLYDISPERSITY  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
How can polydispersity information be integrated in the QSPR modeling of mechanical properties?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-04T19:15:38Z  
dc.journal.volume
2  
dc.journal.number
1  
dc.journal.pagination
1-14  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Schustik, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Martinez Amezaga, Nancy María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Science and Technology of Advanced Materials: Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/27660400.2021.2012540