Mostrar el registro sencillo del ítem
dc.contributor.author
Bellomo, Guido
dc.contributor.author
Bosyk, Gustavo Martin
dc.contributor.other
Lombardi, Olimpia Iris
dc.contributor.other
Fortin, Sebastian Ezequiel
dc.contributor.other
López, Cristian Ariel
dc.contributor.other
Holik, Federico Hernán
dc.date.available
2022-07-12T17:44:59Z
dc.date.issued
2019
dc.identifier.citation
Bellomo, Guido; Bosyk, Gustavo Martin; Majorization, across the (quantum) universe; Cambridge University Press; 2019; 323-342
dc.identifier.isbn
9781108562218
dc.identifier.uri
http://hdl.handle.net/11336/161936
dc.description.abstract
In how many ways can one represent a given quantum mixed state as a mixture of pure states? Why (and in which sense) are separable states more disordered globally than locally? Is it possible to transform a given pure state into another by means of local operations and classical communication? How should an adequate formulation of the uncertainty principle be? All these questions, as dissimilar as they may seem, share one element in common: They can be answered by appealing to the notion of majorization partial order. Majorization is nowadays a well-established and powerful mathematical tool with many and different applications in several disciplines, such as economics, biology, and physics, among others. Indeed, the seminal idea of this concept had already been glimpsed by Lorenz (1905) while studying the inequality of wealth distribution and developing the representation of the (nowadays called) Lorenz curves. Moreover, the famous Gini coefficient (Gini 1912), widely accepted as a legitimate quantifier of income distribution inequality, is merely a ratio between graphical areas defined by a Lorenz curve. Other key contributions to the subject were those by Muirhead (1903), Dalton (1920), Schur (1923), and Hardy, Littlewood, and Pólya (1929). The name “majorization,” though, appears first in the prominent book by Hardy, Littlewood, and Pólya (1934).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
QUANTUM MECHANICS
dc.subject
FOUNDATIONS OF PHYSICS
dc.subject
PHILOSOPHY OF SCIENCE
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Filosofía, Historia y Filosofía de la Ciencia y la Tecnología
dc.subject.classification
Filosofía, Ética y Religión
dc.subject.classification
HUMANIDADES
dc.title
Majorization, across the (quantum) universe
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2020-11-17T20:15:37Z
dc.journal.pagination
323-342
dc.journal.pais
Reino Unido
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/books/abs/quantum-worlds/majorization-across-the-quantum-universe/B65CF24BE09B371F45C9B06B6CF41AAC
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/9781108562218.018
dc.conicet.paginas
398
dc.source.titulo
Quantum worlds: perspectives on the ontology of quantum mechanics
Archivos asociados